IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3517-d813260.html
   My bibliography  Save this article

Power System Stability Analysis of the Sicilian Network in the 2050 OSMOSE Project Scenario

Author

Listed:
  • James Amankwah Adu

    (Department of Electrical, Electronic and Information Engineering, University of Bologna, 40126 Bologna, Italy)

  • Alberto Berizzi

    (Department of Energy, Politecnico di Milano, 20156 Milan, Italy)

  • Francesco Conte

    (Department of Electrical, Electronics and Telecommunication Engineering and Naval Architecture, University of Genoa, 16145 Genoa, Italy)

  • Fabio D’Agostino

    (Department of Electrical, Electronics and Telecommunication Engineering and Naval Architecture, University of Genoa, 16145 Genoa, Italy)

  • Valentin Ilea

    (Department of Energy, Politecnico di Milano, 20156 Milan, Italy)

  • Fabio Napolitano

    (Department of Electrical, Electronic and Information Engineering, University of Bologna, 40126 Bologna, Italy)

  • Tadeo Pontecorvo

    (Department of Electrical, Electronic and Information Engineering, University of Bologna, 40126 Bologna, Italy)

  • Andrea Vicario

    (Department of Energy, Politecnico di Milano, 20156 Milan, Italy)

Abstract

This paper summarizes the results of a power system stability analysis realized for the EU project OSMOSE. The case study is the electrical network of Sicily, one of the two main islands of Italy, in a scenario forecasted for 2050, with a large penetration of renewable generation. The objective is to establish if angle and voltage stabilities can be guaranteed despite the loss of the inertia and the regulation services provided today by traditional thermal power plants. To replace these resources, new flexibility services, potentially provided by renewable energy power plants, battery energy storage systems, and flexible loads, are taken into account. A highly detailed dynamical model of the electrical grid, provided by the same transmission system operator who manages the system, is modified to fit with the 2050 scenario and integrated with the models of the mentioned flexibility services. Thanks to this dynamic model, an extensive simulation analysis on large and small perturbation angle stability and voltage stability is carried out. Results show that stability can be guaranteed, but the use of a suitable combination of the new flexibility services is mandatory.

Suggested Citation

  • James Amankwah Adu & Alberto Berizzi & Francesco Conte & Fabio D’Agostino & Valentin Ilea & Fabio Napolitano & Tadeo Pontecorvo & Andrea Vicario, 2022. "Power System Stability Analysis of the Sicilian Network in the 2050 OSMOSE Project Scenario," Energies, MDPI, vol. 15(10), pages 1-33, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3517-:d:813260
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3517/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3517/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yien Xu & Pei Chen & Xinsong Zhang & Dejian Yang, 2021. "An Improved Droop Control Scheme of a Doubly-Fed Induction Generator for Various Disturbances," Energies, MDPI, vol. 14(23), pages 1-15, November.
    2. Jing Wang & Harsha Padullaparti & Fei Ding & Murali Baggu & Martha Symko-Davies, 2021. "Voltage Regulation Performance Evaluation of Distributed Energy Resource Management via Advanced Hardware-in-the-Loop Simulation," Energies, MDPI, vol. 14(20), pages 1-26, October.
    3. Zhao, Haoran & Wu, Qiuwei & Hu, Shuju & Xu, Honghua & Rasmussen, Claus Nygaard, 2015. "Review of energy storage system for wind power integration support," Applied Energy, Elsevier, vol. 137(C), pages 545-553.
    4. Zhenhuan Ding & Xiaoge Huang & Zhao Liu, 2022. "Active Exploration by Chance-Constrained Optimization for Voltage Regulation with Reinforcement Learning," Energies, MDPI, vol. 15(2), pages 1-17, January.
    5. Heggarty, Thomas & Bourmaud, Jean-Yves & Girard, Robin & Kariniotakis, Georges, 2020. "Quantifying power system flexibility provision," Applied Energy, Elsevier, vol. 279(C).
    6. Akinyemi Ayodeji Stephen & Kabeya Musasa & Innocent Ewean Davidson, 2021. "Voltage Rise Regulation with a Grid Connected Solar Photovoltaic System," Energies, MDPI, vol. 14(22), pages 1-32, November.
    7. Agata Szultka & Seweryn Szultka & Stanislaw Czapp & Robert Karolak & Marcin Andrzejewski & Jacek Kapitaniak & Marcin Kulling & Jan Bonk, 2022. "Voltage Profiles Improvement in a Power Network with PV Energy Sources—Results of a Voltage Regulator Implementation," Energies, MDPI, vol. 15(3), pages 1-14, January.
    8. Santiago Bañales & Raquel Dormido & Natividad Duro, 2021. "Smart Meters Time Series Clustering for Demand Response Applications in the Context of High Penetration of Renewable Energy Resources," Energies, MDPI, vol. 14(12), pages 1-22, June.
    9. Jun Wang & Yien Xu & Xiaoxin Wu & Jiejie Huang & Xinsong Zhang & Hongliang Yuan, 2021. "Enhanced Inertial Response Capability of a Variable Wind Energy Conversion System," Energies, MDPI, vol. 14(23), pages 1-13, December.
    10. Wenying Li & Ming Tang & Xinzhen Zhang & Danhui Gao & Jian Wang, 2021. "Operation of Distributed Battery Considering Demand Response Using Deep Reinforcement Learning in Grid Edge Control," Energies, MDPI, vol. 14(22), pages 1-18, November.
    11. Valentin Ilea & Cristian Bovo & Davide Falabretti & Marco Merlo & Carlo Arrigoni & Roberto Bonera & Marco Rodolfi, 2020. "Voltage Control Methodologies in Active Distribution Networks," Energies, MDPI, vol. 13(12), pages 1-32, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lisa Göransson, 2023. "Balancing Electricity Supply and Demand in a Carbon-Neutral Northern Europe," Energies, MDPI, vol. 16(8), pages 1-27, April.
    2. Chen, Long Xiang & Xie, Mei Na & Zhao, Pan Pan & Wang, Feng Xiang & Hu, Peng & Wang, Dong Xiang, 2018. "A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid," Applied Energy, Elsevier, vol. 210(C), pages 198-210.
    3. Qin, Chao & Saunders, Gordon & Loth, Eric, 2017. "Offshore wind energy storage concept for cost-of-rated-power savings," Applied Energy, Elsevier, vol. 201(C), pages 148-157.
    4. Gui, Yonghao & Wei, Baoze & Li, Mingshen & Guerrero, Josep M. & Vasquez, Juan C., 2018. "Passivity-based coordinated control for islanded AC microgrid," Applied Energy, Elsevier, vol. 229(C), pages 551-561.
    5. Cheng, Meng & Sami, Saif Sabah & Wu, Jianzhong, 2017. "Benefits of using virtual energy storage system for power system frequency response," Applied Energy, Elsevier, vol. 194(C), pages 376-385.
    6. Nyong-Bassey, Bassey Etim & Giaouris, Damian & Patsios, Charalampos & Papadopoulou, Simira & Papadopoulos, Athanasios I. & Walker, Sara & Voutetakis, Spyros & Seferlis, Panos & Gadoue, Shady, 2020. "Reinforcement learning based adaptive power pinch analysis for energy management of stand-alone hybrid energy storage systems considering uncertainty," Energy, Elsevier, vol. 193(C).
    7. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    8. A.S. Jameel Hassan & Umar Marikkar & G.W. Kasun Prabhath & Aranee Balachandran & W.G. Chaminda Bandara & Parakrama B. Ekanayake & Roshan I. Godaliyadda & Janaka B. Ekanayake, 2021. "A Sensitivity Matrix Approach Using Two-Stage Optimization for Voltage Regulation of LV Networks with High PV Penetration," Energies, MDPI, vol. 14(20), pages 1-24, October.
    9. Fichter, Tobias & Soria, Rafael & Szklo, Alexandre & Schaeffer, Roberto & Lucena, Andre F.P., 2017. "Assessing the potential role of concentrated solar power (CSP) for the northeast power system of Brazil using a detailed power system model," Energy, Elsevier, vol. 121(C), pages 695-715.
    10. Mehrabankhomartash, Mahmoud & Rayati, Mohammad & Sheikhi, Aras & Ranjbar, Ali Mohammad, 2017. "Practical battery size optimization of a PV system by considering individual customer damage function," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 36-50.
    11. Felix Garcia-Torres & Ascension Zafra-Cabeza & Carlos Silva & Stephane Grieu & Tejaswinee Darure & Ana Estanqueiro, 2021. "Model Predictive Control for Microgrid Functionalities: Review and Future Challenges," Energies, MDPI, vol. 14(5), pages 1-26, February.
    12. Vorushylo, Inna & Keatley, Patrick & Shah, Nikhilkumar & Green, Richard & Hewitt, Neil, 2018. "How heat pumps and thermal energy storage can be used to manage wind power: A study of Ireland," Energy, Elsevier, vol. 157(C), pages 539-549.
    13. Qin, Chao (Chris) & Loth, Eric, 2021. "Isothermal compressed wind energy storage using abandoned oil/gas wells or coal mines," Applied Energy, Elsevier, vol. 292(C).
    14. Karunakaran Venkatesan & Uma Govindarajan & Padmanathan Kasinathan & Sanjeevikumar Padmanaban & Jens Bo Holm-Nielsen & Zbigniew Leonowicz, 2019. "Economic Analysis of HRES Systems with Energy Storage During Grid Interruptions and Curtailment in Tamil Nadu, India: A Hybrid RBFNOEHO Technique," Energies, MDPI, vol. 12(16), pages 1-26, August.
    15. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    16. Shi, Jie & Wang, Luhao & Lee, Wei-Jen & Cheng, Xingong & Zong, Xiju, 2019. "Hybrid Energy Storage System (HESS) optimization enabling very short-term wind power generation scheduling based on output feature extraction," Applied Energy, Elsevier, vol. 256(C).
    17. Mujjuni, F. & Betts, T. & To, L.S. & Blanchard, R.E., 2021. "Resilience a means to development: A resilience assessment framework and a catalogue of indicators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    18. Segurado, R. & Madeira, J.F.A. & Costa, M. & Duić, N. & Carvalho, M.G., 2016. "Optimization of a wind powered desalination and pumped hydro storage system," Applied Energy, Elsevier, vol. 177(C), pages 487-499.
    19. Rezaee Jordehi, Ahmad, 2016. "Allocation of distributed generation units in electric power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 893-905.
    20. Okazaki, Toru, 2020. "Electric thermal energy storage and advantage of rotating heater having synchronous inertia," Renewable Energy, Elsevier, vol. 151(C), pages 563-574.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3517-:d:813260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.