IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i12p3253-d375511.html
   My bibliography  Save this article

Life Cycle Assessment of a Reversible Heat Pump–Organic Rankine Cycle–Heat Storage System with Geothermal Heat Supply

Author

Listed:
  • Daniel Scharrer

    (Laboratory of Computer Networks and Communication Systems, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Martensstr 3, 91058 Erlangen, Germany)

  • Bernd Eppinger

    (Institute of Engineering Thermodynamics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Am Weichselgarten 8, 91058 Erlangen-Tennenlohe, Germany)

  • Pascal Schmitt

    (Laboratory of Computer Networks and Communication Systems, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Martensstr 3, 91058 Erlangen, Germany)

  • Johan Zenk

    (Laboratory of Computer Networks and Communication Systems, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Martensstr 3, 91058 Erlangen, Germany)

  • Peter Bazan

    (Laboratory of Computer Networks and Communication Systems, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Martensstr 3, 91058 Erlangen, Germany)

  • Jürgen Karl

    (Institue of Energy Process Engineering, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Fürther Strasse 244f, 90429 Nürnberg, Germany)

  • Stefan Will

    (Institute of Engineering Thermodynamics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Am Weichselgarten 8, 91058 Erlangen-Tennenlohe, Germany)

  • Marco Pruckner

    (Laboratory of Computer Networks and Communication Systems, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Martensstr 3, 91058 Erlangen, Germany)

  • Reinhard German

    (Laboratory of Computer Networks and Communication Systems, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Martensstr 3, 91058 Erlangen, Germany)

Abstract

The life cycle assessment of components is becoming increasingly important for planning and construction. In this paper, a novel storage technology for excess electricity consisting of a heat pump, a heat storage and an organic rankine cycle is investigated with regards to its environmental impact. Waste heat is exergetically upgraded, stored in a hot water storage unit and afterwards reconverted to electricity when needed. Such a pilot plant on a lab scale is currently built in Germany. The first part of this paper focuses on geothermal energy as a potential heat source for the storage system and its environmental impact. For a large scale application, geothermal hotspots in Germany are further investigated. The second part analyzes the storage technology itself and compares it to the impacts of commonly used battery storage technologies. Especially during the manufacturing process, significantly better global warming potential values are shown compared to lithium-ion and lead batteries. The least environmental impact while operating the system is with wind power, which suggests an implementation of the storage system into the grid in the northern part of Germany.

Suggested Citation

  • Daniel Scharrer & Bernd Eppinger & Pascal Schmitt & Johan Zenk & Peter Bazan & Jürgen Karl & Stefan Will & Marco Pruckner & Reinhard German, 2020. "Life Cycle Assessment of a Reversible Heat Pump–Organic Rankine Cycle–Heat Storage System with Geothermal Heat Supply," Energies, MDPI, vol. 13(12), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3253-:d:375511
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/12/3253/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/12/3253/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Chao & He, Chao & Gao, Hong & Xie, Hui & Li, Yourong & Wu, Shuangying & Xu, Jinliang, 2013. "The environmental impact of organic Rankine cycle for waste heat recovery through life-cycle assessment," Energy, Elsevier, vol. 56(C), pages 144-154.
    2. Sha Chen & Zhenyue Lian & Sumei Li & Junbeum Kim & Yipei Li & Lei Cao & Zunwen Liu, 2017. "The Environmental Burdens of Lead-Acid Batteries in China: Insights from an Integrated Material Flow Analysis and Life Cycle Assessment of Lead," Energies, MDPI, vol. 10(12), pages 1-15, November.
    3. Sebastian Staub & Peter Bazan & Konstantinos Braimakis & Dominik Müller & Christoph Regensburger & Daniel Scharrer & Bernd Schmitt & Daniel Steger & Reinhard German & Sotirios Karellas & Marco Pruckne, 2018. "Reversible Heat Pump–Organic Rankine Cycle Systems for the Storage of Renewable Electricity," Energies, MDPI, vol. 11(6), pages 1-17, May.
    4. Frick, Stephanie & Kaltschmitt, Martin & Schröder, Gerd, 2010. "Life cycle assessment of geothermal binary power plants using enhanced low-temperature reservoirs," Energy, Elsevier, vol. 35(5), pages 2281-2294.
    5. Alva, Guruprasad & Liu, Lingkun & Huang, Xiang & Fang, Guiyin, 2017. "Thermal energy storage materials and systems for solar energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 693-706.
    6. Wang, Jiangjiang & Yang, Ying & Mao, Tianzhi & Sui, Jun & Jin, Hongguang, 2015. "Life cycle assessment (LCA) optimization of solar-assisted hybrid CCHP system," Applied Energy, Elsevier, vol. 146(C), pages 38-52.
    7. Peters, Jens F. & Baumann, Manuel & Zimmermann, Benedikt & Braun, Jessica & Weil, Marcel, 2017. "The environmental impact of Li-Ion batteries and the role of key parameters – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 491-506.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Milousi & Athanasios Pappas & Andreas P. Vouros & Giouli Mihalakakou & Manolis Souliotis & Spiros Papaefthimiou, 2022. "Evaluating the Technical and Environmental Capabilities of Geothermal Systems through Life Cycle Assessment," Energies, MDPI, vol. 15(15), pages 1-30, August.
    2. Kallis, George & Roumpedakis, Tryfon C. & Pallis, Platon & Koutantzi, Zoi & Charalampidis, Antonios & Karellas, Sotirios, 2022. "Life cycle analysis of a waste heat recovery for marine engines Organic Rankine Cycle," Energy, Elsevier, vol. 257(C).
    3. Scharrer, Daniel & Bazan, Peter & Pruckner, Marco & German, Reinhard, 2022. "Simulation and analysis of a Carnot Battery consisting of a reversible heat pump/organic Rankine cycle for a domestic application in a community with varying number of houses," Energy, Elsevier, vol. 261(PA).
    4. Milana Treshcheva & Irina Anikina & Vitaly Sergeev & Sergey Skulkin & Dmitry Treshchev, 2021. "Selection of Heat Pump Capacity Used at Thermal Power Plants under Electricity Market Operating Conditions," Energies, MDPI, vol. 14(1), pages 1-25, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fadi Alnaimat & Yasir Rashid, 2019. "Thermal Energy Storage in Solar Power Plants: A Review of the Materials, Associated Limitations, and Proposed Solutions," Energies, MDPI, vol. 12(21), pages 1-19, October.
    2. Li, Jian & Peng, Xiayao & Yang, Zhen & Hu, Shuozhuo & Duan, Yuanyuan, 2022. "Design, improvements and applications of dual-pressure evaporation organic Rankine cycles: A review," Applied Energy, Elsevier, vol. 311(C).
    3. Lazaros Aresti & Paul Christodoulides & Gregoris P. Panayiotou & Georgios Florides, 2020. "The Potential of Utilizing Buildings’ Foundations as Thermal Energy Storage (TES) Units from Solar Plate Collectors," Energies, MDPI, vol. 13(11), pages 1-14, May.
    4. Alva, Guruprasad & Huang, Xiang & Liu, Lingkun & Fang, Guiyin, 2017. "Synthesis and characterization of microencapsulated myristic acid–palmitic acid eutectic mixture as phase change material for thermal energy storage," Applied Energy, Elsevier, vol. 203(C), pages 677-685.
    5. Burek, Jasmina & Nutter, Darin W., 2019. "A life cycle assessment-based multi-objective optimization of the purchased, solar, and wind energy for the grocery, perishables, and general merchandise multi-facility distribution center network," Applied Energy, Elsevier, vol. 235(C), pages 1427-1446.
    6. Desreveaux, A. & Bouscayrol, A. & Trigui, R. & Hittinger, E. & Castex, E. & Sirbu, G.M., 2023. "Accurate energy consumption for comparison of climate change impact of thermal and electric vehicles," Energy, Elsevier, vol. 268(C).
    7. Jun Li & Tao Zeng & Noriyuki Kobayashi & Haotai Xu & Yu Bai & Lisheng Deng & Zhaohong He & Hongyu Huang, 2019. "Lithium Hydroxide Reaction for Low Temperature Chemical Heat Storage: Hydration and Dehydration Reaction," Energies, MDPI, vol. 12(19), pages 1-13, September.
    8. Tharsis Teoh & Oliver Kunze & Chee-Chong Teo & Yiik Diew Wong, 2018. "Decarbonisation of Urban Freight Transport Using Electric Vehicles and Opportunity Charging," Sustainability, MDPI, vol. 10(9), pages 1-20, September.
    9. Guo, Junfei & Liu, Zhan & Du, Zhao & Yu, Jiabang & Yang, Xiaohu & Yan, Jinyue, 2021. "Effect of fin-metal foam structure on thermal energy storage: An experimental study," Renewable Energy, Elsevier, vol. 172(C), pages 57-70.
    10. Marit Mohr & Jens F. Peters & Manuel Baumann & Marcel Weil, 2020. "Toward a cell‐chemistry specific life cycle assessment of lithium‐ion battery recycling processes," Journal of Industrial Ecology, Yale University, vol. 24(6), pages 1310-1322, December.
    11. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    12. Hu, Nan & Li, Zi-Rui & Xu, Zhe-Wen & Fan, Li-Wu, 2022. "Rapid charging for latent heat thermal energy storage: A state-of-the-art review of close-contact melting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    13. Jeder, Khawla & Bouhamed, Ayda & Nouri, Hanen & Abdelmoula, Najmeddine & Jöhrmann, Nathanael & Wunderle, Bernhard & Khemakhem, Hamadi & Kanoun, Olfa, 2022. "Enhancement of the performance of flexible lead-free nanogenerators by doping in BaTiO3 nanoparticles," Energy, Elsevier, vol. 261(PB).
    14. Muhammad Suleman Malik & Naveed Iftikhar & Abdul Wadood & Muhammad Omer Khan & Muhammad Usman Asghar & Shahbaz Khan & Tahir Khurshaid & Ki-Chai Kim & Zabdur Rehman & S. Tauqeer ul Islam Rizvi, 2020. "Design and Fabrication of Solar Thermal Energy Storage System Using Potash Alum as a PCM," Energies, MDPI, vol. 13(23), pages 1-16, November.
    15. Delise, T. & Tizzoni, A.C. & Menale, C. & Telling, M.T.F. & Bubbico, R. & Crescenzi, T. & Corsaro, N. & Sau, S. & Licoccia, S., 2020. "Technical and economic analysis of a CSP plant presenting a low freezing ternary mixture as storage and transfer fluid," Applied Energy, Elsevier, vol. 265(C).
    16. Parlikar, Anupam & Truong, Cong Nam & Jossen, Andreas & Hesse, Holger, 2021. "The carbon footprint of island grids with lithium-ion battery systems: An analysis based on levelized emissions of energy supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    17. Kang, Ligai & Yang, Junhong & An, Qingsong & Deng, Shuai & Zhao, Jun & Wang, Hui & Li, Zelin, 2017. "Effects of load following operational strategy on CCHP system with an auxiliary ground source heat pump considering carbon tax and electricity feed in tariff," Applied Energy, Elsevier, vol. 194(C), pages 454-466.
    18. Su, Bosheng & Han, Wei & Zhang, Xiaosong & Chen, Yi & Wang, Zefeng & Jin, Hongguang, 2018. "Assessment of a combined cooling, heating and power system by synthetic use of biogas and solar energy," Applied Energy, Elsevier, vol. 229(C), pages 922-935.
    19. Yang, Wei & Bao, Jingjing & Liu, Hongtao & Zhang, Jun & Guo, Lin, 2023. "Low-grade heat to hydrogen: Current technologies, challenges and prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    20. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3253-:d:375511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.