IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3255-d1684346.html
   My bibliography  Save this article

Review of the Role of Heat Pumps in Decarbonization of the Building Sector

Author

Listed:
  • Agnieszka Żelazna

    (Faculty of Environmental Engineering and Energy, Lublin University of Technology, Nadbystrzycka 40B, 20-618 Lublin, Poland)

  • Artur Pawłowski

    (Faculty of Environmental Engineering and Energy, Lublin University of Technology, Nadbystrzycka 40B, 20-618 Lublin, Poland)

Abstract

The transition to low-carbon heating systems is fundamental to achieving climate neutrality, particularly within the building sector, which accounts for a significant share of global greenhouse gas emissions. Among various technologies, heat pumps have emerged as a leading solution due to their high energy efficiency and potential to significantly reduce CO 2 emissions, especially when powered by renewable electricity. This systematic review synthesizes findings from the recent literature, including peer-reviewed studies and industry reports, to evaluate the technical performance, environmental impact, and deployment potential of air source, ground source, and water source heat pumps. This review also investigates life cycle greenhouse gas emissions, the influence of geographical energy mix diversity, and the integration of heat pumps within hybrid and district heating systems. Results indicate that hybrid HP systems achieve the lowest specific GHG emissions (0.108 kgCO 2 eq/kWh of heat delivered on average), followed by WSHPs (0.018 to 0.216 kgCO 2 eq/kWh), GSHPs (0.050–0.211 kgCO 2 eq/kWh), and ASHPs (0.083–0.216 kgCO 2 eq/kWh). HP systems show a potential GHG emission reduction of up to 90%, depending on the kind of technology and energy mix. Despite higher investment costs, the lower environmental footprint of GSHPs and WSHPs makes them attractive options for decarbonizing the building sector due to better performance resulting from more stable thermal input and higher SCOP. The integration of heat pumps with thermal storage, renewable energy, and smart control technologies further enhances their efficiency and climate benefits, regardless of the challenges facing their market potential. This review concludes that heat pumps, particularly in hybrid configurations, are a cornerstone technology for sustainable building heat supply and energy transition.

Suggested Citation

  • Agnieszka Żelazna & Artur Pawłowski, 2025. "Review of the Role of Heat Pumps in Decarbonization of the Building Sector," Energies, MDPI, vol. 18(13), pages 1-25, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3255-:d:1684346
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3255/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3255/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Violante, Anna Carmela & Donato, Filippo & Guidi, Giambattista & Proposito, Marco, 2022. "Comparative life cycle assessment of the ground source heat pump vs air source heat pump," Renewable Energy, Elsevier, vol. 188(C), pages 1029-1037.
    2. Selman Sevindik & Catalina Spataru & Teresa Domenech Aparisi & Raimund Bleischwitz, 2021. "A Comparative Environmental Assessment of Heat Pumps and Gas Boilers towards a Circular Economy in the UK," Energies, MDPI, vol. 14(11), pages 1-26, May.
    3. Alberta Carella & Luca Del Ferraro & Annunziata D’Orazio, 2023. "Replacement Scenarios of LPG Boilers with Air-to-Water Heat Pumps for a Production Manufacturing Site," Energies, MDPI, vol. 16(17), pages 1-15, August.
    4. George Kyriakarakos, 2025. "Artificial Intelligence and the Energy Transition," Sustainability, MDPI, vol. 17(3), pages 1-10, January.
    5. Rokas Valancius & Rao Martand Singh & Andrius Jurelionis & Juozas Vaiciunas, 2019. "A Review of Heat Pump Systems and Applications in Cold Climates: Evidence from Lithuania," Energies, MDPI, vol. 12(22), pages 1-18, November.
    6. Kim, Junyoung & James, Nelson & Maguire, Jeff, 2024. "Investigation of a high-temperature combination heat pump for lower-cost electrification in multifamily buildings," Applied Energy, Elsevier, vol. 376(PA).
    7. Jangsten, Maria & Filipsson, Peter & Lindholm, Torbjörn & Dalenbäck, Jan-Olof, 2020. "High Temperature District Cooling: Challenges and Possibilities Based on an Existing District Cooling System and its Connected Buildings," Energy, Elsevier, vol. 199(C).
    8. Yunren Sui & Zengguang Sui & Guangda Liang & Wei Wu, 2023. "Superhydrophobic Microchannel Heat Exchanger for Electric Vehicle Heat Pump Performance Enhancement," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
    9. King Tung & Rakesh Kumar & Alan S. Fung & Wey H. Leong, 2025. "Residential Air Source Heat Pump Water Heater Performance Testing and Feasibility Analysis in Cold Climate," Sustainability, MDPI, vol. 17(5), pages 1-17, March.
    10. Masternak, Célia & Meunier, Simon & Reinbold, Vincent & Saelens, Dirk & Marchand, Claude & Leroy, Yann, 2024. "Potential of air-source heat pumps to reduce environmental impacts in 18 European countries," Energy, Elsevier, vol. 292(C).
    11. Lozano Miralles, José Adolfo & López García, Rafael & Palomar Carnicero, José Manuel & Martínez, Francisco Javier Rey, 2020. "Comparative study of heat pump system and biomass boiler system to a tertiary building using the Life Cycle Assessment (LCA)," Renewable Energy, Elsevier, vol. 152(C), pages 1439-1450.
    12. Alexandra Dill & Tristan R. Brown & Robert W. Malmsheimer & HakSoo Ha & Jenny Frank & Pradheep Kileti & Brian Barkwill, 2024. "Quantifying the Financial and Climate Impacts of Greenhouse Gas Abatement Pathways in Residential Space Heating," Sustainability, MDPI, vol. 16(5), pages 1-11, March.
    13. Daniel Scharrer & Bernd Eppinger & Pascal Schmitt & Johan Zenk & Peter Bazan & Jürgen Karl & Stefan Will & Marco Pruckner & Reinhard German, 2020. "Life Cycle Assessment of a Reversible Heat Pump–Organic Rankine Cycle–Heat Storage System with Geothermal Heat Supply," Energies, MDPI, vol. 13(12), pages 1-19, June.
    14. Umara Khan & Ron Zevenhoven & Lydia Stougie & Tor-Martin Tveit, 2021. "Prediction of Stirling-Cycle-Based Heat Pump Performance and Environmental Footprint with Exergy Analysis and LCA," Energies, MDPI, vol. 14(24), pages 1-12, December.
    15. Pistochini, Theresa & Dichter, Mitchal & Chakraborty, Subhrajit & Dichter, Nelson & Aboud, Aref, 2022. "Greenhouse gas emission forecasts for electrification of space heating in residential homes in the US," Energy Policy, Elsevier, vol. 163(C).
    16. Pochwała, Sławomir & Anweiler, Stanisław & Tańczuk, Mariusz & Klementowski, Igor & Przysiężniuk, Dawid & Adrian, Łukasz & McNamara, Greg & Stevanović, Žana, 2023. "Energy source impact on the economic and environmental effects of retrofitting a heritage building with a heat pump system," Energy, Elsevier, vol. 278(PB).
    17. Cristina Sáez Blázquez & Ignacio Martín Nieto & Javier Carrasco García & Pedro Carrasco García & Arturo Farfán Martín & Diego González-Aguilera, 2023. "Comparative Analysis of Ground Source and Air Source Heat Pump Systems under Different Conditions and Scenarios," Energies, MDPI, vol. 16(3), pages 1-16, January.
    18. Agnieszka Żelazna & Justyna Gołębiowska & Dmytro Kosaryha, 2024. "Multi-Criteria Study on Ground Source Heat Pump with Different Types of Heat Exchangers," Energies, MDPI, vol. 17(3), pages 1-16, January.
    19. Hirvonen, Janne & Sirén, Kai, 2018. "A novel fully electrified solar heating system with a high renewable fraction - Optimal designs for a high latitude community," Renewable Energy, Elsevier, vol. 127(C), pages 298-309.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shamoushaki, Moein & Koh, S.C. Lenny, 2024. "Net-zero life cycle supply chain assessment of heat pump technologies," Energy, Elsevier, vol. 309(C).
    2. Roshan Hehar & William Burges & Thomas Fender & Jonathan Radcliffe & Neha Mehta, 2025. "Data-Based Modelling for Quantifying Carbon Dioxide Emissions Reduction Potential by Using Heat Pumps," Energies, MDPI, vol. 18(3), pages 1-16, February.
    3. Viktoria Mannheim & Károly Nehéz & Salman Brbhan & Péter Bencs, 2023. "Primary Energy Resources and Environmental Impacts of Various Heating Systems Based on Life Cycle Assessment," Energies, MDPI, vol. 16(19), pages 1-23, October.
    4. Piotr Ciuman & Jan Kaczmarczyk & Małgorzata Jastrzębska, 2022. "Simulation Analysis of Heat Pumps Application for the Purposes of the Silesian Botanical Garden Facilities in Poland," Energies, MDPI, vol. 16(1), pages 1-19, December.
    5. Luo, Zhenyu & Zhu, Na & Yu, Zhongyi & Zhang, Qin & Yan, Lei & Hu, Pingfang, 2024. "Performance study of dual-source heat pump integrated with radiation capillary terminal system," Energy, Elsevier, vol. 304(C).
    6. Milana Treshcheva & Irina Anikina & Vitaly Sergeev & Sergey Skulkin & Dmitry Treshchev, 2021. "Selection of Heat Pump Capacity Used at Thermal Power Plants under Electricity Market Operating Conditions," Energies, MDPI, vol. 14(1), pages 1-25, January.
    7. Chandan Swaroop Meena & Binju P Raj & Lohit Saini & Nehul Agarwal & Aritra Ghosh, 2021. "Performance Optimization of Solar-Assisted Heat Pump System for Water Heating Applications," Energies, MDPI, vol. 14(12), pages 1-17, June.
    8. Sarabia Escriva, Emilio José & Hart, Matthew & Acha, Salvador & Soto Francés, Víctor & Shah, Nilay & Markides, Christos N., 2022. "Techno-economic evaluation of integrated energy systems for heat recovery applications in food retail buildings," Applied Energy, Elsevier, vol. 305(C).
    9. Inmaculada Gallego-Maya & Carlos Rubio-Bellido, 2024. "Use of International Adaptive Thermal Comfort Models as a Strategy for Adjusting the Museum Environments of the Mudejar Pavilion, Seville," Energies, MDPI, vol. 17(21), pages 1-22, November.
    10. Bayer, Daniel R. & Pruckner, Marco, 2024. "Data-driven heat pump retrofit analysis in residential buildings: Carbon emission reductions and economic viability," Applied Energy, Elsevier, vol. 373(C).
    11. Tobias Brudermueller & Ugne Potthoff & Elgar Fleisch & Felix Wortmann & Thorsten Staake, 2025. "Estimation of energy efficiency of heat pumps in residential buildings using real operation data," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    12. Maria Milousi & Athanasios Pappas & Andreas P. Vouros & Giouli Mihalakakou & Manolis Souliotis & Spiros Papaefthimiou, 2022. "Evaluating the Technical and Environmental Capabilities of Geothermal Systems through Life Cycle Assessment," Energies, MDPI, vol. 15(15), pages 1-30, August.
    13. Rehman, Hassam ur & Hirvonen, Janne & Sirén, Kai, 2018. "Performance comparison between optimized design of a centralized and semi-decentralized community size solar district heating system," Applied Energy, Elsevier, vol. 229(C), pages 1072-1094.
    14. Wang, Feng & Han, Xu & Wang, Zhihao & Yang, Weibo, 2024. "Dust removal by water spray, condensation and defrosting based on superhydrophobic fin surface," Energy, Elsevier, vol. 304(C).
    15. Yasin Khalili & Sara Yasemi & Mahdi Abdi & Masoud Ghasemi Ertian & Maryam Mohammadi & Mohammadreza Bagheri, 2025. "A Review of Integrated Carbon Capture and Hydrogen Storage: AI-Driven Optimization for Efficiency and Scalability," Sustainability, MDPI, vol. 17(13), pages 1-40, June.
    16. Chate, Akshay & Srinivasa Murthy, S. & Dutta, Pradip, 2024. "Analysis of a coupled calcium oxide-potassium carbonate salt hydrate based thermochemical energy storage system," Energy, Elsevier, vol. 313(C).
    17. Fateh Bouchaala & Mohammed Y. Ali & Jun Matsushima & Youcef Bouzidi & Mohammed S. Jouini & Eric M. Takougang & Aala A. Mohamed, 2022. "Estimation of Seismic Wave Attenuation from 3D Seismic Data: A Case Study of OBC Data Acquired in an Offshore Oilfield," Energies, MDPI, vol. 15(2), pages 1-17, January.
    18. Chate, Akshay & Sharma, Rakesh & S, Srinivasa Murthy & Dutta, Pradip, 2022. "Studies on a potassium carbonate salt hydrate based thermochemical energy storage system," Energy, Elsevier, vol. 258(C).
    19. Jangsten, Maria & Lindholm, Torbjörn & Dalenbäck, Jan-Olof, 2020. "Analysis of operational data from a district cooling system and its connected buildings," Energy, Elsevier, vol. 203(C).
    20. Pieper, Henrik & Krupenski, Igor & Brix Markussen, Wiebke & Ommen, Torben & Siirde, Andres & Volkova, Anna, 2021. "Method of linear approximation of COP for heat pumps and chillers based on thermodynamic modelling and off-design operation," Energy, Elsevier, vol. 230(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3255-:d:1684346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.