IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v278y2023ipbs0360544223014317.html
   My bibliography  Save this article

Energy source impact on the economic and environmental effects of retrofitting a heritage building with a heat pump system

Author

Listed:
  • Pochwała, Sławomir
  • Anweiler, Stanisław
  • Tańczuk, Mariusz
  • Klementowski, Igor
  • Przysiężniuk, Dawid
  • Adrian, Łukasz
  • McNamara, Greg
  • Stevanović, Žana

Abstract

In terms of energy efficiency and the quality of the indoor and outdoor environment, heritage buildings are facing sustainability challenges. This study assessed the feasibility of using renewable energy sources based on air-to-water heat pumps with regard to preserving the historic values of the buildings and their ability to coexist with current energy efficiency and decarbonization requirements, and to prevent their neglect and degradation. A new approach is the use of Building Information Modelling to accurately determine energy demand and select a heating system based on renewable energy sources in such an unusual case as a heritage building. The analysis covers a selection of feasible scenario of the modernization of the over 300 years old building. A particular focus of the study is to compare the use different heat pumps systems. One is a reversible gas absorption air-to-water heat pump and the other is an electricity-powered compressor air-to-water heat pump. The building is currently supplied with a fixed-temperature boiler up to 550 kW with an open combustion chamber fed with coal. It was proven that the proposed retrofit scenario reduces final energy demand by 72.9%, while improving thermal comfort, cutting annual emissions by 121.1 Mg CO2 and 1.0 Mg PM10.

Suggested Citation

  • Pochwała, Sławomir & Anweiler, Stanisław & Tańczuk, Mariusz & Klementowski, Igor & Przysiężniuk, Dawid & Adrian, Łukasz & McNamara, Greg & Stevanović, Žana, 2023. "Energy source impact on the economic and environmental effects of retrofitting a heritage building with a heat pump system," Energy, Elsevier, vol. 278(PB).
  • Handle: RePEc:eee:energy:v:278:y:2023:i:pb:s0360544223014317
    DOI: 10.1016/j.energy.2023.128037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223014317
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maciej Dzikuć & Arkadiusz Piwowar & Szymon Szufa & Janusz Adamczyk & Maria Dzikuć, 2021. "Potential and Scenarios of Variants of Thermo-Modernization of Single-Family Houses: An Example of the Lubuskie Voivodeship," Energies, MDPI, vol. 14(1), pages 1-11, January.
    2. Mustaffa, Nur Kamaliah & Kudus, Sakhiah Abdul, 2022. "Challenges and way forward towards best practices of energy efficient building in Malaysia," Energy, Elsevier, vol. 259(C).
    3. Qu, Ke & Chen, Xiangjie & Wang, Yixin & Calautit, John & Riffat, Saffa & Cui, Xin, 2021. "Comprehensive energy, economic and thermal comfort assessments for the passive energy retrofit of historical buildings - A case study of a late nineteenth-century Victorian house renovation in the UK," Energy, Elsevier, vol. 220(C).
    4. Stegnar, G. & Cerovšek, T., 2019. "Information needs for progressive BIM methodology supporting the holistic energy renovation of office buildings," Energy, Elsevier, vol. 173(C), pages 317-331.
    5. Meha, Drilon & Dragusha, Bedri & Thakur, Jagruti & Novosel, Tomislav & Duić, Neven, 2021. "A novel spatial based approach for estimation of space heating demand saving potential and CO2 emissions reduction in urban areas," Energy, Elsevier, vol. 225(C).
    6. Perera, D.W.U. & Winkler, D. & Skeie, N.-O., 2016. "Multi-floor building heating models in MATLAB and Modelica environments," Applied Energy, Elsevier, vol. 171(C), pages 46-57.
    7. Martínez-Molina, Antonio & Tort-Ausina, Isabel & Cho, Soolyeon & Vivancos, José-Luis, 2016. "Energy efficiency and thermal comfort in historic buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 70-85.
    8. Guzović, Zvonimir & Duic, Neven & Piacentino, Antonio & Markovska, Natasa & Mathiesen, Brian Vad & Lund, Henrik, 2022. "Recent advances in methods, policies and technologies at sustainable energy systems development," Energy, Elsevier, vol. 245(C).
    9. Ghiaus, Christian & Ahmad, Naveed, 2020. "Thermal circuits assembling and state-space extraction for modelling heat transfer in buildings," Energy, Elsevier, vol. 195(C).
    10. Łukasz Adrian & Szymon Szufa & Piotr Piersa & Piotr Kuryło & Filip Mikołajczyk & Krystian Kurowski & Sławomir Pochwała & Andrzej Obraniak & Jacek Stelmach & Grzegorz Wielgosiński & Justyna Czerwińska , 2021. "Analysis and Evaluation of Heat Pipe Efficiency to Reduce Low Emission with the Use of Working Agents R134A, R404A and R407C, R410A," Energies, MDPI, vol. 14(7), pages 1-29, March.
    11. Galatioto, A. & Ciulla, G. & Ricciu, R., 2017. "An overview of energy retrofit actions feasibility on Italian historical buildings," Energy, Elsevier, vol. 137(C), pages 991-1000.
    12. Sadeghifam, Aidin Nobahar & Meynagh, Mahdi Moharrami & Tabatabaee, Sanaz & Mahdiyar, Amir & Memari, Ashkan & Ismail, Syuhaida, 2019. "Assessment of the building components in the energy efficient design of tropical residential buildings: An application of BIM and statistical Taguchi method," Energy, Elsevier, vol. 188(C).
    13. Blázquez, Teresa & Ferrari, Simone & Suárez, Rafael & Sendra, Juan José, 2019. "Adaptive approach-based assessment of a heritage residential complex in southern Spain for improving comfort and energy efficiency through passive strategies: A study based on a monitored flat," Energy, Elsevier, vol. 181(C), pages 504-520.
    14. Webb, Amanda L., 2017. "Energy retrofits in historic and traditional buildings: A review of problems and methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 748-759.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akkurt, G.G. & Aste, N. & Borderon, J. & Buda, A. & Calzolari, M. & Chung, D. & Costanzo, V. & Del Pero, C. & Evola, G. & Huerto-Cardenas, H.E. & Leonforte, F. & Lo Faro, A. & Lucchi, E. & Marletta, L, 2020. "Dynamic thermal and hygrometric simulation of historical buildings: Critical factors and possible solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    2. Belén Onecha & Alicia Dotor, 2021. "Simulation Method to Assess Thermal Comfort in Historical Buildings with High-Volume Interior Spaces—The Case of the Gothic Basilica of Sta. Maria del Mar in Barcelona," Sustainability, MDPI, vol. 13(5), pages 1-20, March.
    3. Sara Brito-Coimbra & Daniel Aelenei & Maria Gloria Gomes & Antonio Moret Rodrigues, 2021. "Building Façade Retrofit with Solar Passive Technologies: A Literature Review," Energies, MDPI, vol. 14(6), pages 1-18, March.
    4. Mariangela De Vita & Francesco Duronio & Angelo De Vita & Pierluigi De Berardinis, 2022. "Adaptive Retrofit for Adaptive Reuse: Converting an Industrial Chimney into a Ventilation Duct to Improve Internal Comfort in a Historic Environment," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
    5. Alessia Buda & Ernst Jan de Place Hansen & Alexander Rieser & Emanuela Giancola & Valeria Natalina Pracchi & Sara Mauri & Valentina Marincioni & Virginia Gori & Kalliopi Fouseki & Cristina S. Polo Lóp, 2021. "Conservation-Compatible Retrofit Solutions in Historic Buildings: An Integrated Approach," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    6. Valentina Marincioni & Virginia Gori & Ernst Jan de Place Hansen & Daniel Herrera-Avellanosa & Sara Mauri & Emanuela Giancola & Aitziber Egusquiza & Alessia Buda & Eleonora Leonardi & Alexander Rieser, 2021. "How Can Scientific Literature Support Decision-Making in the Renovation of Historic Buildings? An Evidence-Based Approach for Improving the Performance of Walls," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    7. Lešnik, Maja & Kravanja, Stojan & Premrov, Miroslav & Žegarac Leskovar, Vesna, 2020. "Optimal design of timber-glass upgrade modules for vertical building extension from the viewpoints of energy efficiency and visual comfort," Applied Energy, Elsevier, vol. 270(C).
    8. Yasmine Sabry Hegazi & Heidi Ahmed Shalaby & Mady A. A. Mohamed, 2021. "Adaptive Reuse Decisions for Historic Buildings in Relation to Energy Efficiency and Thermal Comfort—Cairo Citadel, a Case Study from Egypt," Sustainability, MDPI, vol. 13(19), pages 1-26, September.
    9. Egusquiza, A. & Ginestet, S. & Espada, J.C. & Flores-Abascal, I. & Garcia-Gafaro, C. & Giraldo-Soto, C. & Claude, S. & Escadeillas, G., 2021. "Co-creation of local eco-rehabilitation strategies for energy improvement of historic urban areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Belén Onecha & Alicia Dotor & Carlos Marmolejo-Duarte, 2021. "Beyond Cultural and Historic Values, Sustainability as a New Kind of Value for Historic Buildings," Sustainability, MDPI, vol. 13(15), pages 1-18, July.
    11. Laura Balaguer & Fernando Vegas López-Manzanares & Camilla Mileto & Lidia García-Soriano, 2019. "Assessment of the Thermal Behaviour of Rammed Earth Walls in the Summer Period," Sustainability, MDPI, vol. 11(7), pages 1-12, April.
    12. Mirco Andreotti & Dario Bottino-Leone & Marta Calzolari & Pietromaria Davoli & Luisa Dias Pereira & Elena Lucchi & Alexandra Troi, 2020. "Applied Research of the Hygrothermal Behaviour of an Internally Insulated Historic Wall without Vapour Barrier: In Situ Measurements and Dynamic Simulations," Energies, MDPI, vol. 13(13), pages 1-22, July.
    13. Blázquez, Teresa & Ferrari, Simone & Suárez, Rafael & Sendra, Juan José, 2019. "Adaptive approach-based assessment of a heritage residential complex in southern Spain for improving comfort and energy efficiency through passive strategies: A study based on a monitored flat," Energy, Elsevier, vol. 181(C), pages 504-520.
    14. Mariangela De Vita & Giulia Massari & Pierluigi De Berardinis, 2020. "Retrofit Methodology Based on Energy Simulation Modeling Applied for the Enhancement of a Historical Building in L’Aquila," Energies, MDPI, vol. 13(12), pages 1-26, June.
    15. Fedorczak-Cisak, Małgorzata & Radziszewska-Zielina, Elżbieta & Białkiewicz, Andrzej & Prociak, Aleksander & Steidl, Tomasz & Tatara, Tadeusz & Żychowska, Maria & Muniak, Damian Piotr, 2022. "Energy efficiency improvement by using hygrothermal diagnostics algorithm for historical religious buildings," Energy, Elsevier, vol. 252(C).
    16. Lingjun Hao & Daniel Herrera-Avellanosa & Claudio Del Pero & Alexandra Troi, 2020. "What Are the Implications of Climate Change for Retrofitted Historic Buildings? A Literature Review," Sustainability, MDPI, vol. 12(18), pages 1-17, September.
    17. Luca Sbrogiò & Carlotta Bevilacqua & Gabriele De Sordi & Ivano Michelotto & Marco Sbrogiò & Antonio Toniolo & Christian Tosato, 2021. "Strategies for Structural and Energy Improvement in Mid-Rise Unreinforced Masonry Apartment Buildings. A Case Study in Mestre (Northeast Italy)," Sustainability, MDPI, vol. 13(16), pages 1-24, August.
    18. Khadidja Rahmani & Atef Ahriz & Nahla Bouaziz, 2022. "Development of a New Residential Energy Management Approach for Retrofit and Transition, Based on Hybrid Energy Sources," Sustainability, MDPI, vol. 14(7), pages 1-23, March.
    19. Lešnik, Maja & Premrov, Miroslav & Žegarac Leskovar, Vesna, 2018. "Design parameters of the timber-glass upgrade module and the existing building: Impact on the energy-efficient refurbishment process," Energy, Elsevier, vol. 162(C), pages 1125-1138.
    20. Xun Liu & Zhenhan Ding & Xiaobo Li & Zhiyuan Xue, 2023. "Research Progress, Hotspots, and Trends of Using BIM to Reduce Building Energy Consumption: Visual Analysis Based on WOS Database," IJERPH, MDPI, vol. 20(4), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:pb:s0360544223014317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.