IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2829-d366484.html
   My bibliography  Save this article

Formation and Continuation of Thermal Energy Community Systems: An Explorative Agent-Based Model for the Netherlands

Author

Listed:
  • Javanshir Fouladvand

    (Energy and Industry Section, Engineering Systems and Services Department, Technology, Policy and Management Faculty, Delft University of Technology (TU Delft), 2628 BX Delft, The Netherlands)

  • Niek Mouter

    (Transports and Logistics, Engineering Systems and Services Department, Technology, Policy and Management Faculty, Delft University of Technology (TU Delft), 2628 BX Delft, The Netherlands)

  • Amineh Ghorbani

    (Energy and Industry Section, Engineering Systems and Services Department, Technology, Policy and Management Faculty, Delft University of Technology (TU Delft), 2628 BX Delft, The Netherlands)

  • Paulien Herder

    (Process and Energy Department, Mechanical, Maritime and Materials Engineering Faculty, Delft University of Technology (TU Delft), 2628 CB Delft, The Netherlands)

Abstract

Energy communities are key elements in the energy transition at the local level as they aim to generate and distribute energy based on renewable energy technologies locally. The literature on community energy systems is dominated by the study of electricity systems. Yet, thermal energy applications cover 75% of the total energy consumption in households and small businesses. Community-driven initiatives for local generation and distribution of thermal energy, however, remain largely unaddressed in the literature. Since thermal energy communities are relatively new in the energy transition discussions, it is important to have a better understanding of thermal energy community systems and how these systems function. The starting point of this understanding is to study factors that influence the formation and continuation of thermal energy communities. To work towards this aim, an abstract agent-based model has been developed that explores four seemingly trivial factors, namely: neighborhood size, minimum member requirement, satisfaction factor and drop-out factor. Our preliminary modelling results indicate correlations between thermal community formation and the ’formation capability’ (the percentage of households that joined) and with the satisfaction of households. No relation was found with the size of the community (in terms of number of households) or with the ‘drop-out factor’ (individual households that quit after the contract time).

Suggested Citation

  • Javanshir Fouladvand & Niek Mouter & Amineh Ghorbani & Paulien Herder, 2020. "Formation and Continuation of Thermal Energy Community Systems: An Explorative Agent-Based Model for the Netherlands," Energies, MDPI, vol. 13(11), pages 1-22, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2829-:d:366484
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2829/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2829/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nair, Gireesh & Gustavsson, Leif & Mahapatra, Krushna, 2010. "Factors influencing energy efficiency investments in existing Swedish residential buildings," Energy Policy, Elsevier, vol. 38(6), pages 2956-2963, June.
    2. Negro, Simona O. & Alkemade, Floortje & Hekkert, Marko P., 2012. "Why does renewable energy diffuse so slowly? A review of innovation system problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3836-3846.
    3. Treffers, D. J. & Faaij, A. P. C. & Spakman, J. & Seebregts, A., 2005. "Exploring the possibilities for setting up sustainable energy systems for the long term: two visions for the Dutch energy system in 2050," Energy Policy, Elsevier, vol. 33(13), pages 1723-1743, September.
    4. Singh, H. & Muetze, A. & Eames, P.C., 2010. "Factors influencing the uptake of heat pump technology by the UK domestic sector," Renewable Energy, Elsevier, vol. 35(4), pages 873-878.
    5. Perlaviciute, G. & Steg, L., 2015. "The influence of values on evaluations of energy alternatives," Renewable Energy, Elsevier, vol. 77(C), pages 259-267.
    6. Walker, Gordon & Devine-Wright, Patrick, 2008. "Community renewable energy: What should it mean," Energy Policy, Elsevier, vol. 36(2), pages 497-500, February.
    7. Kumar, Abhishek & Sah, Bikash & Singh, Arvind R. & Deng, Yan & He, Xiangning & Kumar, Praveen & Bansal, R.C., 2017. "A review of multi criteria decision making (MCDM) towards sustainable renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 596-609.
    8. van der Schoor, Tineke & Scholtens, Bert, 2015. "Power to the people: Local community initiatives and the transition to sustainable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 666-675.
    9. Bauwens, Thomas, 2016. "Explaining the diversity of motivations behind community renewable energy," Energy Policy, Elsevier, vol. 93(C), pages 278-290.
    10. Fay, Ginny & Udovyk, Nataliya, 2013. "Factors influencing success of wind-diesel hybrid systems in remote Alaska communities: Results of an informal survey," Renewable Energy, Elsevier, vol. 57(C), pages 554-557.
    11. Mahzouni, Arian, 2019. "The role of institutional entrepreneurship in emerging energy communities: The town of St. Peter in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 297-308.
    12. Arteconi, A. & Hewitt, N.J. & Polonara, F., 2012. "State of the art of thermal storage for demand-side management," Applied Energy, Elsevier, vol. 93(C), pages 371-389.
    13. Woo, JongRoul & Chung, Sungsam & Lee, Chul-Yong & Huh, Sung-Yoon, 2019. "Willingness to participate in community-based renewable energy projects: A contingent valuation study in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 643-652.
    14. Kern, Florian & Smith, Adrian, 2008. "Restructuring energy systems for sustainability? Energy transition policy in the Netherlands," Energy Policy, Elsevier, vol. 36(11), pages 4093-4103, November.
    15. Franceschinis, Cristiano & Thiene, Mara & Scarpa, Riccardo & Rose, John & Moretto, Michele & Cavalli, Raffaele, 2017. "Adoption of renewable heating systems: An empirical test of the diffusion of innovation theory," Energy, Elsevier, vol. 125(C), pages 313-326.
    16. Pacesila, Mihaela & Burcea, Stefan Gabriel & Colesca, Sofia Elena, 2016. "Analysis of renewable energies in European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 156-170.
    17. Tambach, Milly & Hasselaar, Evert & Itard, Laure, 2010. "Assessment of current Dutch energy transition policy instruments for the existing housing stock," Energy Policy, Elsevier, vol. 38(2), pages 981-996, February.
    18. Sousa, Tiago & Soares, Tiago & Pinson, Pierre & Moret, Fabio & Baroche, Thomas & Sorin, Etienne, 2019. "Peer-to-peer and community-based markets: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 367-378.
    19. Bauwens, Thomas, 2019. "Analyzing the determinants of the size of investments by community renewable energy members: Findings and policy implications from Flanders," Energy Policy, Elsevier, vol. 129(C), pages 841-852.
    20. Walker, Gordon & Devine-Wright, Patrick & Hunter, Sue & High, Helen & Evans, Bob, 2010. "Trust and community: Exploring the meanings, contexts and dynamics of community renewable energy," Energy Policy, Elsevier, vol. 38(6), pages 2655-2663, June.
    21. Persson, U. & Möller, B. & Werner, S., 2014. "Heat Roadmap Europe: Identifying strategic heat synergy regions," Energy Policy, Elsevier, vol. 74(C), pages 663-681.
    22. Koirala, Binod Prasad & Koliou, Elta & Friege, Jonas & Hakvoort, Rudi A. & Herder, Paulien M., 2016. "Energetic communities for community energy: A review of key issues and trends shaping integrated community energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 722-744.
    23. De Boeck, L. & Verbeke, S. & Audenaert, A. & De Mesmaeker, L., 2015. "Improving the energy performance of residential buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 960-975.
    24. Brandoni, Caterina & Polonara, Fabio, 2012. "The role of municipal energy planning in the regional energy-planning process," Energy, Elsevier, vol. 48(1), pages 323-338.
    25. Boon, Frank Pieter & Dieperink, Carel, 2014. "Local civil society based renewable energy organisations in the Netherlands: Exploring the factors that stimulate their emergence and development," Energy Policy, Elsevier, vol. 69(C), pages 297-307.
    26. Parag, Yael & Hamilton, Jo & White, Vicki & Hogan, Bernie, 2013. "Network approach for local and community governance of energy: The case of Oxfordshire," Energy Policy, Elsevier, vol. 62(C), pages 1064-1077.
    27. Walker, Gordon, 2008. "What are the barriers and incentives for community-owned means of energy production and use?," Energy Policy, Elsevier, vol. 36(12), pages 4401-4405, December.
    28. Wouter Schram & Atse Louwen & Ioannis Lampropoulos & Wilfried van Sark, 2019. "Comparison of the Greenhouse Gas Emission Reduction Potential of Energy Communities," Energies, MDPI, vol. 12(23), pages 1-23, November.
    29. Dick Magnusson & Jenny Palm, 2019. "Come Together—The Development of Swedish Energy Communities," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    30. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    31. Murphy, Rose & Jaccard, Mark, 2011. "Energy efficiency and the cost of GHG abatement: A comparison of bottom-up and hybrid models for the US," Energy Policy, Elsevier, vol. 39(11), pages 7146-7155.
    32. St. Denis, Genevieve & Parker, Paul, 2009. "Community energy planning in Canada: The role of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2088-2095, October.
    33. Schweizer-Ries, Petra, 2008. "Energy sustainable communities: Environmental psychological investigations," Energy Policy, Elsevier, vol. 36(11), pages 4126-4135, November.
    34. Werner, Sven, 2017. "International review of district heating and cooling," Energy, Elsevier, vol. 137(C), pages 617-631.
    35. Dvarioniene, Jolanta & Gurauskiene, Inga & Gecevicius, Giedrius & Trummer, Dora Ruth & Selada, Catarina & Marques, Isabel & Cosmi, Carmelina, 2015. "Stakeholders involvement for energy conscious communities: The Energy Labs experience in 10 European communities," Renewable Energy, Elsevier, vol. 75(C), pages 512-518.
    36. Tronchin, Lamberto & Manfren, Massimiliano & Nastasi, Benedetto, 2018. "Energy efficiency, demand side management and energy storage technologies – A critical analysis of possible paths of integration in the built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 341-353.
    37. Jaccard, Mark & Failing, Lee & Berry, Trent, 1997. "From equipment to infrastructure: community energy management and greenhouse gas emission reduction," Energy Policy, Elsevier, vol. 25(13), pages 1065-1074, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ceglia, Francesca & Marrasso, Elisa & Roselli, Carlo & Sasso, Maurizio, 2023. "Energy and environmental assessment of a biomass-based renewable energy community including photovoltaic and hydroelectric systems," Energy, Elsevier, vol. 282(C).
    2. Binod Prasad Koirala & Ellen C. J. van Oost & Esther C. van der Waal & Henny J. van der Windt, 2021. "New Pathways for Community Energy and Storage," Energies, MDPI, vol. 14(2), pages 1-8, January.
    3. Nava-Guerrero, Graciela-del-Carmen & Hansen, Helle Hvid & Korevaar, Gijsbert & Lukszo, Zofia, 2022. "An agent-based exploration of the effect of multi-criteria decisions on complex socio-technical heat transitions," Applied Energy, Elsevier, vol. 306(PB).
    4. Gianfranco Di Lorenzo & Erika Stracqualursi & Leonardo Micheli & Luigi Martirano & Rodolfo Araneo, 2022. "Challenges in Energy Communities: State of the Art and Future Perspectives," Energies, MDPI, vol. 15(19), pages 1-5, October.
    5. Lode, M.L. & te Boveldt, G. & Coosemans, T. & Ramirez Camargo, L., 2022. "A transition perspective on Energy Communities: A systematic literature review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fouladvand, Javanshir & Aranguren Rojas, Maria & Hoppe, Thomas & Ghorbani, Amineh, 2022. "Simulating thermal energy community formation: Institutional enablers outplaying technological choice," Applied Energy, Elsevier, vol. 306(PA).
    2. Klein, Sharon J.W. & Coffey, Stephanie, 2016. "Building a sustainable energy future, one community at a time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 867-880.
    3. Chiara Candelise & Gianluca Ruggieri, 2017. "Community Energy in Italy: Heterogeneous institutional characteristics and citizens engagement," IEFE Working Papers 93, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    4. Dalia Streimikiene & Tomas Baležentis & Artiom Volkov & Mangirdas Morkūnas & Agnė Žičkienė & Justas Streimikis, 2021. "Barriers and Drivers of Renewable Energy Penetration in Rural Areas," Energies, MDPI, vol. 14(20), pages 1-28, October.
    5. Lode, M.L. & te Boveldt, G. & Coosemans, T. & Ramirez Camargo, L., 2022. "A transition perspective on Energy Communities: A systematic literature review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    6. Berka, Anna L. & Creamer, Emily, 2018. "Taking stock of the local impacts of community owned renewable energy: A review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3400-3419.
    7. Eitan, Avri & Herman, Lior & Fischhendler, Itay & Rosen, Gillad, 2019. "Community–private sector partnerships in renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 95-104.
    8. Romero-Castro, Noelia & Piñeiro-Chousa, Juan & Pérez-Pico, Ada, 2021. "Dealing with heterogeneity and complexity in the analysis of the willingness to invest in community renewable energy in rural areas," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    9. Conradie, Peter D. & De Ruyck, Olivia & Saldien, Jelle & Ponnet, Koen, 2021. "Who wants to join a renewable energy community in Flanders? Applying an extended model of Theory of Planned Behaviour to understand intent to participate," Energy Policy, Elsevier, vol. 151(C).
    10. Beau Warbroek & Thomas Hoppe & Frans Coenen & Hans Bressers, 2018. "The Role of Intermediaries in Supporting Local Low-Carbon Energy Initiatives," Sustainability, MDPI, vol. 10(7), pages 1-28, July.
    11. Koirala, Binod Prasad & Koliou, Elta & Friege, Jonas & Hakvoort, Rudi A. & Herder, Paulien M., 2016. "Energetic communities for community energy: A review of key issues and trends shaping integrated community energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 722-744.
    12. Bauwens, Thomas & Schraven, Daan & Drewing, Emily & Radtke, Jörg & Holstenkamp, Lars & Gotchev, Boris & Yildiz, Özgür, 2022. "Conceptualizing community in energy systems: A systematic review of 183 definitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    13. Busch, Henner & Ruggiero, Salvatore & Isakovic, Aljosa & Hansen, Teis, 2021. "Policy challenges to community energy in the EU: A systematic review of the scientific literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    14. Holstenkamp, Lars & Kahla, Franziska, 2016. "What are community energy companies trying to accomplish? An empirical investigation of investment motives in the German case," Energy Policy, Elsevier, vol. 97(C), pages 112-122.
    15. van der Schoor, Tineke & Scholtens, Bert, 2015. "Power to the people: Local community initiatives and the transition to sustainable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 666-675.
    16. F.G. Reis, Inês & Gonçalves, Ivo & A.R. Lopes, Marta & Henggeler Antunes, Carlos, 2021. "Business models for energy communities: A review of key issues and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    17. Goedkoop, F. & Dijkstra, J. & Flache, A., 2022. "A social network perspective on involvement in community energy initiatives: The role of direct and extended social ties to initiators," Energy Policy, Elsevier, vol. 171(C).
    18. Moritz Ehrtmann & Lars Holstenkamp & Timon Becker, 2021. "Regional Electricity Models for Community Energy in Germany: The Role of Governance Structures," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
    19. Brummer, Vasco, 2018. "Community energy – benefits and barriers: A comparative literature review of Community Energy in the UK, Germany and the USA, the benefits it provides for society and the barriers it faces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 187-196.
    20. Fuentes González, Fabián & van der Weijde, Adriaan Hendrik & Sauma, Enzo, 2020. "The promotion of community energy projects in Chile and Scotland: An economic approach using biform games," Energy Economics, Elsevier, vol. 86(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2829-:d:366484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.