Dynamic Residential Energy Management for Real-Time Pricing
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Rastegar, Mohammad & Fotuhi-Firuzabad, Mahmud & Aminifar, Farrokh, 2012. "Load commitment in a smart home," Applied Energy, Elsevier, vol. 96(C), pages 45-54.
- Marin Cerjan & Marin Matijaš & Marko Delimar, 2014. "Dynamic Hybrid Model for Short-Term Electricity Price Forecasting," Energies, MDPI, vol. 7(5), pages 1-15, May.
- Papadimitriou, Theophilos & Gogas, Periklis & Stathakis, Efthimios, 2014. "Forecasting energy markets using support vector machines," Energy Economics, Elsevier, vol. 44(C), pages 135-142.
- Liu, Heping & Shi, Jing, 2013. "Applying ARMA–GARCH approaches to forecasting short-term electricity prices," Energy Economics, Elsevier, vol. 37(C), pages 152-166.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Francesco Mancini & Jacopo Cimaglia & Gianluigi Lo Basso & Sabrina Romano, 2021. "Implementation and Simulation of Real Load Shifting Scenarios Based on a Flexibility Price Market Strategy—The Italian Residential Sector as a Case Study," Energies, MDPI, vol. 14(11), pages 1-21, May.
- Qingle Pang & Lin Ye & Houlei Gao & Xinian Li & Yang Zheng & Chenbin He, 2021. "Penalty Electricity Price-Based Optimal Control for Distribution Networks," Energies, MDPI, vol. 14(7), pages 1-16, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chuntian Cheng & Bin Luo & Shumin Miao & Xinyu Wu, 2016. "Mid-Term Electricity Market Clearing Price Forecasting with Sparse Data: A Case in Newly-Reformed Yunnan Electricity Market," Energies, MDPI, vol. 9(10), pages 1-22, October.
- Ping Jiang & Feng Liu & Yiliao Song, 2016. "A Hybrid Multi-Step Model for Forecasting Day-Ahead Electricity Price Based on Optimization, Fuzzy Logic and Model Selection," Energies, MDPI, vol. 9(8), pages 1-27, August.
- Simon Pezzutto & Gianluca Grilli & Stefano Zambotti & Stefan Dunjic, 2018. "Forecasting Electricity Market Price for End Users in EU28 until 2020—Main Factors of Influence," Energies, MDPI, vol. 11(6), pages 1-18, June.
- Wang, Delu & Wang, Yadong & Song, Xuefeng & Liu, Yun, 2018. "Coal overcapacity in China: Multiscale analysis and prediction," Energy Economics, Elsevier, vol. 70(C), pages 244-257.
- Agrawal, Rahul Kumar & Muchahary, Frankle & Tripathi, Madan Mohan, 2019. "Ensemble of relevance vector machines and boosted trees for electricity price forecasting," Applied Energy, Elsevier, vol. 250(C), pages 540-548.
- Erdinc, Ozan, 2014. "Economic impacts of small-scale own generating and storage units, and electric vehicles under different demand response strategies for smart households," Applied Energy, Elsevier, vol. 126(C), pages 142-150.
- Florian Ziel & Rick Steinert & Sven Husmann, 2015. "Forecasting day ahead electricity spot prices: The impact of the EXAA to other European electricity markets," Papers 1501.00818, arXiv.org, revised Dec 2015.
- Rao, Amar & Sharma, Gagan Deep & Tiwari, Aviral Kumar & Hossain, Mohammad Razib & Dev, Dhairya, 2025. "Crude oil Price forecasting: Leveraging machine learning for global economic stability," Technological Forecasting and Social Change, Elsevier, vol. 216(C).
- Erik Heilmann & Janosch Henze & Heike Wetzel, 2021. "Machine learning in energy forecasts with an application to high frequency electricity consumption data," MAGKS Papers on Economics 202135, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
- Zoran Gligorić & Svetlana Štrbac Savić & Aleksandra Grujić & Milanka Negovanović & Omer Musić, 2018. "Short-Term Electricity Price Forecasting Model Using Interval-Valued Autoregressive Process," Energies, MDPI, vol. 11(7), pages 1-17, July.
- Zeng, Sheng & Su, Bin & Zhang, Minglong & Gao, Yuan & Liu, Jun & Luo, Song & Tao, Qingmei, 2021. "Analysis and forecast of China's energy consumption structure," Energy Policy, Elsevier, vol. 159(C).
- Thrampoulidis, Emmanouil & Mavromatidis, Georgios & Lucchi, Aurelien & Orehounig, Kristina, 2021. "A machine learning-based surrogate model to approximate optimal building retrofit solutions," Applied Energy, Elsevier, vol. 281(C).
- Cong, Lin William & Li, Ye & Wang, Neng, 2022.
"Token-based platform finance,"
Journal of Financial Economics, Elsevier, vol. 144(3), pages 972-991.
- Cong, Lin W. & Li, Ye & Wang, Neng, 2019. "Token-Based Platform Finance," Working Paper Series 2019-28, Ohio State University, Charles A. Dice Center for Research in Financial Economics.
- Lin William Cong & Ye Li & Neng Wang, 2020. "Token-Based Platform Finance," NBER Working Papers 27810, National Bureau of Economic Research, Inc.
- Baruník, Jozef & Malinská, Barbora, 2016.
"Forecasting the term structure of crude oil futures prices with neural networks,"
Applied Energy, Elsevier, vol. 164(C), pages 366-379.
- Jozef Barunik & Barbora Malinska, 2015. "Forecasting the term structure of crude oil futures prices with neural networks," Papers 1504.04819, arXiv.org.
- Jozef Barunik & Barbora Malinska, 2015. "Forecasting the Term Structure of Crude Oil Futures Prices with Neural Networks," Working Papers IES 2015/25, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Nov 2015.
- Zhang, Wenbin & Tian, Lixin & Wang, Minggang & Zhen, Zaili & Fang, Guochang, 2016. "The evolution model of electricity market on the stable development in China and its dynamic analysis," Energy, Elsevier, vol. 114(C), pages 344-359.
- Rubaszek Michal & Karolak Zuzanna & Kwas Marek & Uddin Gazi Salah, 2020. "The role of the threshold effect for the dynamics of futures and spot prices of energy commodities," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(5), pages 1-20, December.
- Wang, Yong & Li, Lin, 2015. "Time-of-use electricity pricing for industrial customers: A survey of U.S. utilities," Applied Energy, Elsevier, vol. 149(C), pages 89-103.
- Emilio Colombo & Gianfranco Forte & Roberto Rossignoli, 2019.
"Carry Trade Returns with Support Vector Machines,"
International Review of Finance, International Review of Finance Ltd., vol. 19(3), pages 483-504, September.
- Emilio Colombo & Gianfranco Forte & Roberto Rossignoli, 2017. "Carry trade returns with Support Vector Machines," DISEIS - Quaderni del Dipartimento di Economia internazionale, delle istituzioni e dello sviluppo dis1705, Università Cattolica del Sacro Cuore, Dipartimento di Economia internazionale, delle istituzioni e dello sviluppo (DISEIS).
- Schreiber, Michael & Wainstein, Martin E. & Hochloff, Patrick & Dargaville, Roger, 2015. "Flexible electricity tariffs: Power and energy price signals designed for a smarter grid," Energy, Elsevier, vol. 93(P2), pages 2568-2581.
- Alexander Ryota Keeley & Ken’ichi Matsumoto & Kenta Tanaka & Yogi Sugiawan & Shunsuke Managi, 2021.
"The Impact of Renewable Energy Generation on the Spot Market Price in Germany: Ex-Post Analysis using Boosting Method,"
The Energy Journal, , vol. 42(1_suppl), pages 1-22, June.
- Alexander Ryota Keeley, Kenichi Matsumoto, Kenta Tanaka, Yogi Sugiawan, and Shunsuke Managi, 2020. "The Impact of Renewable Energy Generation on the Spot Market Price in Germany: Ex-Post Analysis using Boosting Method," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
- Alexander Ryota Keeley & Ken’ichi Matsumoto & Kenta Tanaka & Yogi Sugiawan & Shunsuke Managi, 2020. "The Impact of Renewable Energy Generation on the Spot Market Price in Germany: Ex-Post Analysis using Boosting Method," The Energy Journal, , vol. 41(1_suppl), pages 119-140, June.
- Keeley, Alexander Ryota & Matsumoto, Ken'ichi & Tanaka, Kenta & Sugiawan, Yogi & Managi, Shunsuke, 2020. "The Impact of Renewable Energy Generation on the Spot Market Price in Germany: Ex-Post Analysis using Boosting Method," MPRA Paper 102314, University Library of Munich, Germany.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2562-:d:359807. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.