IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2494-d358466.html
   My bibliography  Save this article

Durability and Reliability of EV Batteries under Electric Utility Grid Operations: Impact of Frequency Regulation Usage on Cell Degradation

Author

Listed:
  • George Baure

    (Hawai’i Natural Energy Institute, SOEST, University of Hawai’i at Mānoa, 1680 East-West Road, POST 109, Honolulu, HI 96822, USA)

  • Matthieu Dubarry

    (Hawai’i Natural Energy Institute, SOEST, University of Hawai’i at Mānoa, 1680 East-West Road, POST 109, Honolulu, HI 96822, USA)

Abstract

The usage of electric vehicle batteries to assist the main electric grid for the storage of energy provided by intermittent sources should become an essential tool to increase the penetration of green energies. However, this service induces additional usage on the cells and, therefore, could degrade them further. Since degradation is path-dependent, it is of paramount importance to test the impact of all the different grid applications on the batteries. In this work, we tested the additional usage induced by using electric vehicle batteries for frequency regulation at moderate rates during rest or charge and found no detrimental effect after around 2000 cycles on the cells.

Suggested Citation

  • George Baure & Matthieu Dubarry, 2020. "Durability and Reliability of EV Batteries under Electric Utility Grid Operations: Impact of Frequency Regulation Usage on Cell Degradation," Energies, MDPI, vol. 13(10), pages 1-11, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2494-:d:358466
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2494/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2494/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bishop, Justin D.K. & Axon, Colin J. & Bonilla, David & Tran, Martino & Banister, David & McCulloch, Malcolm D., 2013. "Evaluating the impact of V2G services on the degradation of batteries in PHEV and EV," Applied Energy, Elsevier, vol. 111(C), pages 206-218.
    2. Andrew W Thompson & Yannick Perez, 2019. "Vehicle-to-Anything (V2X) Energy Services, Value Streams, and Regulatory Policy Implications," Working Papers hal-02265826, HAL.
    3. Björn Nykvist & Måns Nilsson, 2015. "Rapidly falling costs of battery packs for electric vehicles," Nature Climate Change, Nature, vol. 5(4), pages 329-332, April.
    4. Wee, Sherilyn & Coffman, Makena & La Croix, Sumner, 2018. "Do electric vehicle incentives matter? Evidence from the 50 U.S. states," Research Policy, Elsevier, vol. 47(9), pages 1601-1610.
    5. Uddin, Kotub & Dubarry, Matthieu & Glick, Mark B., 2018. "The viability of vehicle-to-grid operations from a battery technology and policy perspective," Energy Policy, Elsevier, vol. 113(C), pages 342-347.
    6. Mwasilu, Francis & Justo, Jackson John & Kim, Eun-Kyung & Do, Ton Duc & Jung, Jin-Woo, 2014. "Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 501-516.
    7. Lefeng, Shi & Qian, Zhang & Yongjian, Pu, 2013. "The reserve trading model considering V2G Reverse," Energy, Elsevier, vol. 59(C), pages 50-55.
    8. Zhao, Yang & Tatari, Omer, 2015. "A hybrid life cycle assessment of the vehicle-to-grid application in light duty commercial fleet," Energy, Elsevier, vol. 93(P2), pages 1277-1286.
    9. Karl Stein & Moe Tun & Marc Matsuura & Richard Rocheleau, 2018. "Characterization of a Fast Battery Energy Storage System for Primary Frequency Response," Energies, MDPI, vol. 11(12), pages 1-12, December.
    10. Muhammad Aziz & Takuya Oda & Takashi Mitani & Yoko Watanabe & Takao Kashiwagi, 2015. "Utilization of Electric Vehicles and Their Used Batteries for Peak-Load Shifting," Energies, MDPI, vol. 8(5), pages 1-19, April.
    11. Pastor-Fernández, Carlos & Yu, Tung Fai & Widanage, W. Dhammika & Marco, James, 2019. "Critical review of non-invasive diagnosis techniques for quantification of degradation modes in lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 138-159.
    12. Marongiu, Andrea & Roscher, Marco & Sauer, Dirk Uwe, 2015. "Influence of the vehicle-to-grid strategy on the aging behavior of lithium battery electric vehicles," Applied Energy, Elsevier, vol. 137(C), pages 899-912.
    13. Karl Stein & Moe Tun & Keith Musser & Richard Rocheleau, 2018. "Evaluation of a 1 MW, 250 kW-hr Battery Energy Storage System for Grid Services for the Island of Hawaii," Energies, MDPI, vol. 11(12), pages 1-17, December.
    14. Gaizka Saldaña & Jose Ignacio San Martin & Inmaculada Zamora & Francisco Javier Asensio & Oier Oñederra, 2019. "Electric Vehicle into the Grid: Charging Methodologies Aimed at Providing Ancillary Services Considering Battery Degradation," Energies, MDPI, vol. 12(12), pages 1-37, June.
    15. Uddin, Kotub & Jackson, Tim & Widanage, Widanalage D. & Chouchelamane, Gael & Jennings, Paul A. & Marco, James, 2017. "On the possibility of extending the lifetime of lithium-ion batteries through optimal V2G facilitated by an integrated vehicle and smart-grid system," Energy, Elsevier, vol. 133(C), pages 710-722.
    16. Arnaud Devie & George Baure & Matthieu Dubarry, 2018. "Intrinsic Variability in the Degradation of a Batch of Commercial 18650 Lithium-Ion Cells," Energies, MDPI, vol. 11(5), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paolo Scarabaggio & Raffaele Carli & Graziana Cavone & Mariagrazia Dotoli, 2020. "Smart Control Strategies for Primary Frequency Regulation through Electric Vehicles: A Battery Degradation Perspective," Energies, MDPI, vol. 13(17), pages 1-19, September.
    2. Nikita V. Martyushev & Boris V. Malozyomov & Svetlana N. Sorokova & Egor A. Efremenkov & Denis V. Valuev & Mengxu Qi, 2023. "Review Models and Methods for Determining and Predicting the Reliability of Technical Systems and Transport," Mathematics, MDPI, vol. 11(15), pages 1-31, July.
    3. Nataliia Shamarova & Konstantin Suslov & Pavel Ilyushin & Ilia Shushpanov, 2022. "Review of Battery Energy Storage Systems Modeling in Microgrids with Renewables Considering Battery Degradation," Energies, MDPI, vol. 15(19), pages 1-18, September.
    4. Shabani, Masoume & Wallin, Fredrik & Dahlquist, Erik & Yan, Jinyue, 2023. "The impact of battery operating management strategies on life cycle cost assessment in real power market for a grid-connected residential battery application," Energy, Elsevier, vol. 270(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gaizka Saldaña & Jose Ignacio San Martin & Inmaculada Zamora & Francisco Javier Asensio & Oier Oñederra, 2019. "Electric Vehicle into the Grid: Charging Methodologies Aimed at Providing Ancillary Services Considering Battery Degradation," Energies, MDPI, vol. 12(12), pages 1-37, June.
    2. Petit, Martin & Prada, Eric & Sauvant-Moynot, Valérie, 2016. "Development of an empirical aging model for Li-ion batteries and application to assess the impact of Vehicle-to-Grid strategies on battery lifetime," Applied Energy, Elsevier, vol. 172(C), pages 398-407.
    3. Pearre, Nathaniel S. & Ribberink, Hajo, 2019. "Review of research on V2X technologies, strategies, and operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 61-70.
    4. Wen, Shuang & Lin, Ni & Huang, Shengxu & Wang, Zhenpo & Zhang, Zhaosheng, 2023. "Lithium battery health state assessment based on vehicle-to-grid (V2G) real-world data and natural gradient boosting model," Energy, Elsevier, vol. 284(C).
    5. Ruben Garruto & Michela Longo & Wahiba Yaïci & Federica Foiadelli, 2020. "Connecting Parking Facilities to the Electric Grid: A Vehicle-to-Grid Feasibility Study in a Railway Station’s Car Park," Energies, MDPI, vol. 13(12), pages 1-23, June.
    6. Alain Aoun & Hussein Ibrahim & Mazen Ghandour & Adrian Ilinca, 2019. "Supply Side Management vs. Demand Side Management of a Residential Microgrid Equipped with an Electric Vehicle in a Dual Tariff Scheme," Energies, MDPI, vol. 12(22), pages 1-21, November.
    7. Keumju Lim & Justine Jihyun Kim & Jongsu Lee, 2020. "Forecasting the future scale of vehicle to grid technology for electric vehicles and its economic value as future electric energy source: The case of South Korea," Energy & Environment, , vol. 31(8), pages 1350-1366, December.
    8. Thompson, Andrew W. & Perez, Yannick, 2020. "Vehicle-to-Everything (V2X) energy services, value streams, and regulatory policy implications," Energy Policy, Elsevier, vol. 137(C).
    9. Stef Proost & Mads Greaker & Cathrine Hagem, 2019. "Vehicle-to-Grid. Impacts on the electricity market and consumer cost of electric vehicles," Discussion Papers 903, Statistics Norway, Research Department.
    10. Fernandes, A. & Woudstra, T. & van Wijk, A. & Verhoef, L. & Aravind, P.V., 2016. "Fuel cell electric vehicle as a power plant and SOFC as a natural gas reformer: An exergy analysis of different system designs," Applied Energy, Elsevier, vol. 173(C), pages 13-28.
    11. Solanke, Tirupati U. & Khatua, Pradeep K. & Ramachandaramurthy, Vigna K. & Yong, Jia Ying & Tan, Kang Miao, 2021. "Control and management of a multilevel electric vehicles infrastructure integrated with distributed resources: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    12. Iacobucci, Riccardo & McLellan, Benjamin & Tezuka, Tetsuo, 2018. "Modeling shared autonomous electric vehicles: Potential for transport and power grid integration," Energy, Elsevier, vol. 158(C), pages 148-163.
    13. Nnaemeka Vincent Emodi & Scott Dwyer & Kriti Nagrath & John Alabi, 2022. "Electromobility in Australia: Tariff Design Structure and Consumer Preferences for Mobile Distributed Energy Storage," Sustainability, MDPI, vol. 14(11), pages 1-18, May.
    14. Theodoros A. Skouras & Panagiotis K. Gkonis & Charalampos N. Ilias & Panagiotis T. Trakadas & Eleftherios G. Tsampasis & Theodore V. Zahariadis, 2019. "Electrical Vehicles: Current State of the Art, Future Challenges, and Perspectives," Clean Technol., MDPI, vol. 2(1), pages 1-16, December.
    15. Yumiko Iwafune & Kazuhiko Ogimoto, 2020. "Economic Impacts of the Demand Response of Electric Vehicles Considering Battery Degradation," Energies, MDPI, vol. 13(21), pages 1-19, November.
    16. Muhammad Huda & Tokimatsu Koji & Muhammad Aziz, 2020. "Techno Economic Analysis of Vehicle to Grid (V2G) Integration as Distributed Energy Resources in Indonesia Power System," Energies, MDPI, vol. 13(5), pages 1-16, March.
    17. Lefeng, Shi & Shengnan, Lv & Chunxiu, Liu & Yue, Zhou & Cipcigan, Liana & Acker, Thomas L., 2020. "A framework for electric vehicle power supply chain development," Utilities Policy, Elsevier, vol. 64(C).
    18. Riccardo Iacobucci & Benjamin McLellan & Tetsuo Tezuka, 2018. "The Synergies of Shared Autonomous Electric Vehicles with Renewable Energy in a Virtual Power Plant and Microgrid," Energies, MDPI, vol. 11(8), pages 1-20, August.
    19. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo, 2020. "Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    20. Rahman, Syed & Khan, Irfan Ahmed & Khan, Ashraf Ali & Mallik, Ayan & Nadeem, Muhammad Faisal, 2022. "Comprehensive review & impact analysis of integrating projected electric vehicle charging load to the existing low voltage distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).

    More about this item

    Keywords

    lithium-ion; dQ/dV; dV/dQ; frequency regulation; V2G; G2V; electric vehicle;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2494-:d:358466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.