IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i4p712-d208114.html
   My bibliography  Save this article

Minute-Scale Forecasting of Wind Power—Results from the Collaborative Workshop of IEA Wind Task 32 and 36

Author

Listed:
  • Ines Würth

    (Stuttgart Wind Energy, University of Stuttgart, Allmandring 5b, 70569 Stuttgart, Germany)

  • Laura Valldecabres

    (ForWind-University of Oldenburg, Institute of Physics, Küpkersweg 70, 26129 Oldenburg, Germany)

  • Elliot Simon

    (DTU Wind Energy (Risø Campus), Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde, Denmark)

  • Corinna Möhrlen

    (WEPROG, Willemoesgade 15B, 5610 Assens, Denmark)

  • Bahri Uzunoğlu

    (Department of Engineering Sciences, Division of Electricity, Uppsala University, The Ångström Laboratory, Box 534, 751 21 Uppsala, Sweden
    Department of Mathematics, Florida State University, Tallahassee, FL 32310, USA)

  • Ciaran Gilbert

    (Department of Electronic and Electrical Engineering, University of Strathclyde, 204 George St, Glasgow G11XW, UK)

  • Gregor Giebel

    (DTU Wind Energy (Risø Campus), Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde, Denmark)

  • David Schlipf

    (Wind Energy Technology Institute, Flensburg University of Applied Sciences, Kanzleistraße 91–93, 24943 Flensburg, Germany)

  • Anton Kaifel

    (Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg, Meitnerstraße 1, 70563 Stuttgart, Germany)

Abstract

The demand for minute-scale forecasts of wind power is continuously increasing with the growing penetration of renewable energy into the power grid, as grid operators need to ensure grid stability in the presence of variable power generation. For this reason, IEA Wind Tasks 32 and 36 together organized a workshop on “Very Short-Term Forecasting of Wind Power” in 2018 to discuss different approaches for the implementation of minute-scale forecasts into the power industry. IEA Wind is an international platform for the research community and industry. Task 32 tries to identify and mitigate barriers to the use of lidars in wind energy applications, while IEA Wind Task 36 focuses on improving the value of wind energy forecasts to the wind energy industry. The workshop identified three applications that need minute-scale forecasts: (1) wind turbine and wind farm control, (2) power grid balancing, (3) energy trading and ancillary services. The forecasting horizons for these applications range from around 1 s for turbine control to 60 min for energy market and grid control applications. The methods that can be applied to generate minute-scale forecasts rely on upstream data from remote sensing devices such as scanning lidars or radars, or are based on point measurements from met masts, turbines or profiling remote sensing devices. Upstream data needs to be propagated with advection models and point measurements can either be used in statistical time series models or assimilated into physical models. All methods have advantages but also shortcomings. The workshop’s main conclusions were that there is a need for further investigations into the minute-scale forecasting methods for different use cases, and a cross-disciplinary exchange of different method experts should be established. Additionally, more efforts should be directed towards enhancing quality and reliability of the input measurement data.

Suggested Citation

  • Ines Würth & Laura Valldecabres & Elliot Simon & Corinna Möhrlen & Bahri Uzunoğlu & Ciaran Gilbert & Gregor Giebel & David Schlipf & Anton Kaifel, 2019. "Minute-Scale Forecasting of Wind Power—Results from the Collaborative Workshop of IEA Wind Task 32 and 36," Energies, MDPI, vol. 12(4), pages 1-30, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:712-:d:208114
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/4/712/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/4/712/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Yao & Wang, Jianxue & Wang, Xifan, 2014. "Review on probabilistic forecasting of wind power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 255-270.
    2. Ricardo J. Bessa & Corinna Möhrlen & Vanessa Fundel & Malte Siefert & Jethro Browell & Sebastian Haglund El Gaidi & Bri-Mathias Hodge & Umit Cali & George Kariniotakis, 2017. "Towards Improved Understanding of the Applicability of Uncertainty Forecasts in the Electric Power Industry," Energies, MDPI, vol. 10(9), pages 1-48, September.
    3. P. Pinson, 2012. "Very-short-term probabilistic forecasting of wind power with generalized logit–normal distributions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 61(4), pages 555-576, August.
    4. Niu, Tong & Wang, Jianzhou & Zhang, Kequan & Du, Pei, 2018. "Multi-step-ahead wind speed forecasting based on optimal feature selection and a modified bat algorithm with the cognition strategy," Renewable Energy, Elsevier, vol. 118(C), pages 213-229.
    5. Pierre Pinson & Henrik Madsen, 2012. "Adaptive modelling and forecasting of offshore wind power fluctuations with Markov‐switching autoregressive models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 31(4), pages 281-313, July.
    6. Erdem, Ergin & Shi, Jing, 2011. "ARMA based approaches for forecasting the tuple of wind speed and direction," Applied Energy, Elsevier, vol. 88(4), pages 1405-1414, April.
    7. Jooyoung Jeon & James W. Taylor, 2012. "Using Conditional Kernel Density Estimation for Wind Power Density Forecasting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 66-79, March.
    8. Gallego-Castillo, Cristobal & Cuerva-Tejero, Alvaro & Lopez-Garcia, Oscar, 2015. "A review on the recent history of wind power ramp forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1148-1157.
    9. Feng, Cong & Cui, Mingjian & Hodge, Bri-Mathias & Zhang, Jie, 2017. "A data-driven multi-model methodology with deep feature selection for short-term wind forecasting," Applied Energy, Elsevier, vol. 190(C), pages 1245-1257.
    10. Li, Gong & Shi, Jing, 2010. "On comparing three artificial neural networks for wind speed forecasting," Applied Energy, Elsevier, vol. 87(7), pages 2313-2320, July.
    11. Hering, Amanda S. & Genton, Marc G., 2010. "Powering Up With Space-Time Wind Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 92-104.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pablo L. Tabosa da Silva & Pedro A. Carvalho Rosas & José F. C. Castro & Davidson da Costa Marques & Ronaldo R. B. Aquino & Guilherme F. Rissi & Rafael C. Neto & Douglas C. P. Barbosa, 2023. "Power Smoothing Strategy for Wind Generation Based on Fuzzy Control Strategy with Battery Energy Storage System," Energies, MDPI, vol. 16(16), pages 1-16, August.
    2. Mathieu Pichault & Claire Vincent & Grant Skidmore & Jason Monty, 2021. "Short-Term Wind Power Forecasting at the Wind Farm Scale Using Long-Range Doppler LiDAR," Energies, MDPI, vol. 14(9), pages 1-21, May.
    3. Yan, Jie & Möhrlen, Corinna & Göçmen, Tuhfe & Kelly, Mark & Wessel, Arne & Giebel, Gregor, 2022. "Uncovering wind power forecasting uncertainty sources and their propagation through the whole modelling chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    4. Brygida Klemens & Brygida Solga & Krystian Heffner & Piotr Gibas, 2022. "Environmental and Energy Conditions in Sustainable Regional Development," Energies, MDPI, vol. 15(15), pages 1-26, August.
    5. Conor Sweeney & Ricardo J. Bessa & Jethro Browell & Pierre Pinson, 2020. "The future of forecasting for renewable energy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(2), March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Jie & Möhrlen, Corinna & Göçmen, Tuhfe & Kelly, Mark & Wessel, Arne & Giebel, Gregor, 2022. "Uncovering wind power forecasting uncertainty sources and their propagation through the whole modelling chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    2. Messner, Jakob W. & Pinson, Pierre, 2019. "Online adaptive lasso estimation in vector autoregressive models for high dimensional wind power forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1485-1498.
    3. Aziz Ezzat, Ahmed, 2020. "Turbine-specific short-term wind speed forecasting considering within-farm wind field dependencies and fluctuations," Applied Energy, Elsevier, vol. 269(C).
    4. Gallego-Castillo, Cristobal & Bessa, Ricardo & Cavalcante, Laura & Lopez-Garcia, Oscar, 2016. "On-line quantile regression in the RKHS (Reproducing Kernel Hilbert Space) for operational probabilistic forecasting of wind power," Energy, Elsevier, vol. 113(C), pages 355-365.
    5. Daniela Castro-Camilo & Raphaël Huser & Håvard Rue, 2019. "A Spliced Gamma-Generalized Pareto Model for Short-Term Extreme Wind Speed Probabilistic Forecasting," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 517-534, September.
    6. Ambach, Daniel & Schmid, Wolfgang, 2017. "A new high-dimensional time series approach for wind speed, wind direction and air pressure forecasting," Energy, Elsevier, vol. 135(C), pages 833-850.
    7. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    8. Amanda S. Hering & Karen Kazor & William Kleiber, 2015. "A Markov-Switching Vector Autoregressive Stochastic Wind Generator for Multiple Spatial and Temporal Scales," Resources, MDPI, vol. 4(1), pages 1-23, February.
    9. Taylor, James W., 2017. "Probabilistic forecasting of wind power ramp events using autoregressive logit models," European Journal of Operational Research, Elsevier, vol. 259(2), pages 703-712.
    10. Lv, Jiaqing & Zheng, Xiaodong & Pawlak, Mirosław & Mo, Weike & Miśkowicz, Marek, 2021. "Very short-term probabilistic wind power prediction using sparse machine learning and nonparametric density estimation algorithms," Renewable Energy, Elsevier, vol. 177(C), pages 181-192.
    11. Gensler, André & Sick, Bernhard & Vogt, Stephan, 2018. "A review of uncertainty representations and metaverification of uncertainty assessment techniques for renewable energies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 352-379.
    12. Xu, Li & Ou, Yanxia & Cai, Jingjing & Wang, Jin & Fu, Yang & Bian, Xiaoyan, 2023. "Offshore wind speed assessment with statistical and attention-based neural network methods based on STL decomposition," Renewable Energy, Elsevier, vol. 216(C).
    13. Jannik Schütz Roungkvist & Peter Enevoldsen, 2020. "Timescale classification in wind forecasting: A review of the state‐of‐the‐art," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 757-768, August.
    14. Zhang, Yao & Wang, Jianxue & Wang, Xifan, 2014. "Review on probabilistic forecasting of wind power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 255-270.
    15. Emeksiz, Cem & Tan, Mustafa, 2022. "Multi-step wind speed forecasting and Hurst analysis using novel hybrid secondary decomposition approach," Energy, Elsevier, vol. 238(PA).
    16. Abuella, Mohamed & Chowdhury, Badrul, 2019. "Forecasting of solar power ramp events: A post-processing approach," Renewable Energy, Elsevier, vol. 133(C), pages 1380-1392.
    17. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    18. Song, Jingjing & Wang, Jianzhou & Lu, Haiyan, 2018. "A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 215(C), pages 643-658.
    19. Taylor, James W. & Jeon, Jooyoung, 2015. "Forecasting wind power quantiles using conditional kernel estimation," Renewable Energy, Elsevier, vol. 80(C), pages 370-379.
    20. Yıldıran, Uğur & Kayahan, İsmail, 2018. "Risk-averse stochastic model predictive control-based real-time operation method for a wind energy generation system supported by a pumped hydro storage unit," Applied Energy, Elsevier, vol. 226(C), pages 631-643.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:712-:d:208114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.