IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v31y2012i4p281-313.html
   My bibliography  Save this article

Adaptive modelling and forecasting of offshore wind power fluctuations with Markov‐switching autoregressive models

Author

Listed:
  • Pierre Pinson
  • Henrik Madsen

Abstract

No abstract is available for this item.

Suggested Citation

  • Pierre Pinson & Henrik Madsen, 2012. "Adaptive modelling and forecasting of offshore wind power fluctuations with Markov‐switching autoregressive models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 31(4), pages 281-313, July.
  • Handle: RePEc:wly:jforec:v:31:y:2012:i:4:p:281-313
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yao & Wang, Jianxue & Wang, Xifan, 2014. "Review on probabilistic forecasting of wind power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 255-270.
    2. Song, Zhe & Jiang, Yu & Zhang, Zijun, 2014. "Short-term wind speed forecasting with Markov-switching model," Applied Energy, Elsevier, vol. 130(C), pages 103-112.
    3. Luigi Spezia & Andy Vinten & Roberta Paroli & Marc Stutter, 2021. "An evolutionary Monte Carlo method for the analysis of turbidity high‐frequency time series through Markov switching autoregressive models," Environmetrics, John Wiley & Sons, Ltd., vol. 32(8), December.
    4. Hu, Jianming & Wang, Jianzhou & Xiao, Liqun, 2017. "A hybrid approach based on the Gaussian process with t-observation model for short-term wind speed forecasts," Renewable Energy, Elsevier, vol. 114(PB), pages 670-685.
    5. Ines Würth & Laura Valldecabres & Elliot Simon & Corinna Möhrlen & Bahri Uzunoğlu & Ciaran Gilbert & Gregor Giebel & David Schlipf & Anton Kaifel, 2019. "Minute-Scale Forecasting of Wind Power—Results from the Collaborative Workshop of IEA Wind Task 32 and 36," Energies, MDPI, vol. 12(4), pages 1-30, February.
    6. H. Kent Baker & Satish Kumar & Debidutta Pattnaik, 2021. "Research constituents, intellectual structure, and collaboration pattern in the Journal of Forecasting: A bibliometric analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(4), pages 577-602, July.
    7. Daniela Castro-Camilo & Raphaël Huser & Håvard Rue, 2019. "A Spliced Gamma-Generalized Pareto Model for Short-Term Extreme Wind Speed Probabilistic Forecasting," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 517-534, September.
    8. Amanda S. Hering & Karen Kazor & William Kleiber, 2015. "A Markov-Switching Vector Autoregressive Stochastic Wind Generator for Multiple Spatial and Temporal Scales," Resources, MDPI, vol. 4(1), pages 1-23, February.
    9. Messner, Jakob W. & Pinson, Pierre, 2019. "Online adaptive lasso estimation in vector autoregressive models for high dimensional wind power forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1485-1498.
    10. Monbet, Valérie & Ailliot, Pierre, 2017. "Sparse vector Markov switching autoregressive models. Application to multivariate time series of temperature," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 40-51.
    11. Chan, Wai-Sum, 2022. "On temporal aggregation of some nonlinear time-series models," Econometrics and Statistics, Elsevier, vol. 21(C), pages 38-49.
    12. Sommer, Benedikt & Pinson, Pierre & Messner, Jakob W. & Obst, David, 2021. "Online distributed learning in wind power forecasting," International Journal of Forecasting, Elsevier, vol. 37(1), pages 205-223.
    13. Suárez-Cetrulo, Andrés L. & Burnham-King, Lauren & Haughton, David & Carbajo, Ricardo Simón, 2022. "Wind power forecasting using ensemble learning for day-ahead energy trading," Renewable Energy, Elsevier, vol. 191(C), pages 685-698.
    14. Li, Chen, 2020. "Designing a short-term load forecasting model in the urban smart grid system," Applied Energy, Elsevier, vol. 266(C).
    15. Vrontos, Spyridon D. & Galakis, John & Vrontos, Ioannis D., 2021. "Modeling and predicting U.S. recessions using machine learning techniques," International Journal of Forecasting, Elsevier, vol. 37(2), pages 647-671.
    16. Poncela, Marta & Poncela, Pilar & Perán, José Ramón, 2013. "Automatic tuning of Kalman filters by maximum likelihood methods for wind energy forecasting," Applied Energy, Elsevier, vol. 108(C), pages 349-362.
    17. Ouyang, Tinghui & Zha, Xiaoming & Qin, Liang & He, Yusen & Tang, Zhenhao, 2019. "Prediction of wind power ramp events based on residual correction," Renewable Energy, Elsevier, vol. 136(C), pages 781-792.
    18. Kou, Peng & Gao, Feng & Guan, Xiaohong, 2013. "Sparse online warped Gaussian process for wind power probabilistic forecasting," Applied Energy, Elsevier, vol. 108(C), pages 410-428.
    19. Widén, Joakim & Carpman, Nicole & Castellucci, Valeria & Lingfors, David & Olauson, Jon & Remouit, Flore & Bergkvist, Mikael & Grabbe, Mårten & Waters, Rafael, 2015. "Variability assessment and forecasting of renewables: A review for solar, wind, wave and tidal resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 356-375.
    20. Ricardo Bessa & Carlos Moreira & Bernardo Silva & Manuel Matos, 2014. "Handling renewable energy variability and uncertainty in power systems operation," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(2), pages 156-178, March.
    21. Abdoos, Ali Akbar & Abdoos, Hatef & Kazemitabar, Javad & Mobashsher, Mohammad Mehdi & Khaloo, Hooman, 2023. "An intelligent hybrid method based on Monte Carlo simulation for short-term probabilistic wind power prediction," Energy, Elsevier, vol. 278(PA).
    22. Zheng, Chong-wei, 2021. "Global oceanic wave energy resource dataset—with the Maritime Silk Road as a case study," Renewable Energy, Elsevier, vol. 169(C), pages 843-854.
    23. Yunchuan Liu & Amir Ghasemkhani & Lei Yang, 2022. "Drifting Streaming Peaks-Over-Threshold-Enhanced Self-Evolving Neural Networks for Short-Term Wind Farm Generation Forecast," Future Internet, MDPI, vol. 15(1), pages 1-19, December.
    24. Mingzhe Zou & Sasa Z. Djokic, 2020. "A Review of Approaches for the Detection and Treatment of Outliers in Processing Wind Turbine and Wind Farm Measurements," Energies, MDPI, vol. 13(16), pages 1-30, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:31:y:2012:i:4:p:281-313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.