IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i3p534-d204256.html
   My bibliography  Save this article

Insights from Past Trends in Exergy Efficiency and Carbon Intensity of Electricity: Portugal, 1900–2014

Author

Listed:
  • Laura Felício

    (MARETEC—Marine, Environment and Technology Center, LARSyS, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal)

  • Sofia T. Henriques

    (Department of Economic History, Lund University, Box 7083, S-220 07 Lund, Sweden)

  • André Serrenho

    (Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK)

  • Tiago Domingos

    (MARETEC—Marine, Environment and Technology Center, LARSyS, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal)

  • Tânia Sousa

    (MARETEC—Marine, Environment and Technology Center, LARSyS, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal)

Abstract

We use the societal exergy analysis to identify periods and factors controlling efficiency dilution and carbon deepening of electricity in Portugal from 1900 to 2014. Besides estimating the carbon intensity of electricity production, we propose a new indicator, the carbon intensity of electricity use, which quantifies CO 2 /kWh of electricity derived useful exergy. Results show final to useful efficiency dilution until World War I (50% to 30%) due to a decrease in share of the high-efficiency transport sector and from mid-1940s to 1960 and mid-1990s onwards (58% to 47% and 47% to 40%) due to an increase in share of the low efficiency commercial and residential sector. Decarbonization from 1900 to mid-1960s, with carbon intensities of electricity production and use dropping respectively from 12.8 to 0.2 and from 33.6 to 0.4 kg CO 2 /kWh due to an increase in thermoelectricity efficiencies and an increase in share of hydro. Then, a period of carbon deepening until 1990 with carbon intensities tripling due to a shift in shares from hydro to thermoelectricity and more recently a period of decarbonization with carbon intensities decreasing to 0.35 and 0.9 kg CO 2 /kWh, due to the increase in renewable electricity despite a dilution in final to useful efficiency.

Suggested Citation

  • Laura Felício & Sofia T. Henriques & André Serrenho & Tiago Domingos & Tânia Sousa, 2019. "Insights from Past Trends in Exergy Efficiency and Carbon Intensity of Electricity: Portugal, 1900–2014," Energies, MDPI, vol. 12(3), pages 1-22, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:534-:d:204256
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/3/534/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/3/534/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roger Fouquet & Peter J.G. Pearson, 2006. "Seven Centuries of Energy Services: The Price and Use of Light in the United Kingdom (1300-2000)," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 139-178.
    2. Serrenho, André Cabrera & Sousa, Tânia & Warr, Benjamin & Ayres, Robert U. & Domingos, Tiago, 2014. "Decomposition of useful work intensity: The EU (European Union)-15 countries from 1960 to 2009," Energy, Elsevier, vol. 76(C), pages 704-715.
    3. Sousa, Tânia & Brockway, Paul E. & Cullen, Jonathan M. & Henriques, Sofia Teives & Miller, Jack & Serrenho, André Cabrera & Domingos, Tiago, 2017. "The Need for Robust, Consistent Methods in Societal Exergy Accounting," Ecological Economics, Elsevier, vol. 141(C), pages 11-21.
    4. Ayres, Robert U. & Ayres, Leslie W. & Pokrovsky, Vladimir, 2005. "On the efficiency of US electricity usage since 1900," Energy, Elsevier, vol. 30(7), pages 1092-1145.
    5. Sofia Teives Henriques & Paul Sharp, 2021. "Without coal in the age of steam and dams in the age of electricity: an explanation for the failure of Portugal to industrialize before the Second World War," European Review of Economic History, European Historical Economics Society, vol. 25(1), pages 85-105.
    6. Serrenho, André Cabrera & Warr, Benjamin & Sousa, Tânia & Ayres, Robert U. & Domingos, Tiago, 2016. "Structure and dynamics of useful work along the agriculture-industry-services transition: Portugal from 1856 to 2009," Structural Change and Economic Dynamics, Elsevier, vol. 36(C), pages 1-21.
    7. Goh, Tian & Ang, B.W. & Su, Bin & Wang, H., 2018. "Drivers of stagnating global carbon intensity of electricity and the way forward," Energy Policy, Elsevier, vol. 113(C), pages 149-156.
    8. Miguel Palma & Tânia Sousa & Zeus Guevara, 2016. "How Much Detail Should We Use to Compute Societal Aggregated Exergy Efficiencies?," Energies, MDPI, vol. 9(5), pages 1-13, May.
    9. Wall, Göran & Sciubba, Enrico & Naso, Vincenzo, 1994. "Exergy use in the Italian society," Energy, Elsevier, vol. 19(12), pages 1267-1274.
    10. Devine, Warren D., 1983. "From Shafts to Wires: Historical Perspective on Electrification," The Journal of Economic History, Cambridge University Press, vol. 43(2), pages 347-372, June.
    11. Heun, Matthew Kuperus & Brockway, Paul E., 2019. "Meeting 2030 primary energy and economic growth goals: Mission impossible?," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    12. Zeus Guevara & Tânia Sousa & Tiago Domingos, 2016. "Insights on Energy Transitions in Mexico from the Analysis of Useful Exergy 1971–2009," Energies, MDPI, vol. 9(7), pages 1-29, June.
    13. Joanne Evans & Lester C. Hunt (ed.), 2009. "International Handbook on the Economics of Energy," Books, Edward Elgar Publishing, number 12764.
    14. Rosenberg, Nathan, 1972. "Factors affecting the diffusion of technology," Explorations in Economic History, Elsevier, vol. 10(1), pages 3-33.
    15. Chen, G.Q. & Chen, B., 2009. "Extended-exergy analysis of the Chinese society," Energy, Elsevier, vol. 34(9), pages 1127-1144.
    16. Ertesvåg, Ivar S & Mielnik, Michal, 2000. "Exergy analysis of the Norwegian society," Energy, Elsevier, vol. 25(10), pages 957-973.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Felício, Laura & Henriques, Sofia Teives & Guevara, Zeus & Sousa, Tânia, 2024. "From electrification to decarbonization: Insights from Portugal's experience (1960–2016)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
    2. Marco Vittorio Ecclesia & João Santos & Paul E. Brockway & Tiago Domingos, 2022. "A Comprehensive Societal Energy Return on Investment Study of Portugal Reveals a Low but Stable Value," Energies, MDPI, vol. 15(10), pages 1-22, May.
    3. Teles Huo & Miguel St. Aubyn, 2022. "Electricity, Exergy and Economic Growth in Mozambique," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 439-446, July.
    4. Pinto, Ricardo & Henriques, Sofia T. & Brockway, Paul E. & Heun, Matthew Kuperus & Sousa, Tânia, 2023. "The rise and stall of world electricity efficiency:1900–2017, results and insights for the renewables transition," Energy, Elsevier, vol. 269(C).
    5. Pinto, Ricardo & Henriques, Sofia & Brockway, Paul & Heun, Matthew & Sousa, Tânia, 2022. "The rise and stall of world electricity efficiency:1900-2017, results and implication for the renewables transitions," MPRA Paper 112487, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pinto, Ricardo & Henriques, Sofia T. & Brockway, Paul E. & Heun, Matthew Kuperus & Sousa, Tânia, 2023. "The rise and stall of world electricity efficiency:1900–2017, results and insights for the renewables transition," Energy, Elsevier, vol. 269(C).
    2. Sousa, Tânia & Brockway, Paul E. & Cullen, Jonathan M. & Henriques, Sofia Teives & Miller, Jack & Serrenho, André Cabrera & Domingos, Tiago, 2017. "The Need for Robust, Consistent Methods in Societal Exergy Accounting," Ecological Economics, Elsevier, vol. 141(C), pages 11-21.
    3. Serrenho, André Cabrera & Sousa, Tânia & Warr, Benjamin & Ayres, Robert U. & Domingos, Tiago, 2014. "Decomposition of useful work intensity: The EU (European Union)-15 countries from 1960 to 2009," Energy, Elsevier, vol. 76(C), pages 704-715.
    4. Heun, Matthew Kuperus & Owen, Anne & Brockway, Paul E., 2018. "A physical supply-use table framework for energy analysis on the energy conversion chain," Applied Energy, Elsevier, vol. 226(C), pages 1134-1162.
    5. Felício, Laura & Henriques, Sofia Teives & Guevara, Zeus & Sousa, Tânia, 2024. "From electrification to decarbonization: Insights from Portugal's experience (1960–2016)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
    6. Ricardo Manso & Tânia Sousa & Tiago Domingos, 2017. "Do the Different Exergy Accounting Methodologies Provide Consistent or Contradictory Results? A Case Study with the Portuguese Agricultural, Forestry and Fisheries Sector," Energies, MDPI, vol. 10(8), pages 1-31, August.
    7. Serrenho, André Cabrera & Warr, Benjamin & Sousa, Tânia & Ayres, Robert U. & Domingos, Tiago, 2016. "Structure and dynamics of useful work along the agriculture-industry-services transition: Portugal from 1856 to 2009," Structural Change and Economic Dynamics, Elsevier, vol. 36(C), pages 1-21.
    8. Miguel Palma & Tânia Sousa & Zeus Guevara, 2016. "How Much Detail Should We Use to Compute Societal Aggregated Exergy Efficiencies?," Energies, MDPI, vol. 9(5), pages 1-13, May.
    9. Matthew Kuperus Heun & Zeke Marshall & Emmanuel Aramendia & Paul E. Brockway, 2020. "The Energy and Exergy of Light with Application to Societal Exergy Analysis," Energies, MDPI, vol. 13(20), pages 1-24, October.
    10. Zeus Guevara & Tânia Sousa & Tiago Domingos, 2016. "Insights on Energy Transitions in Mexico from the Analysis of Useful Exergy 1971–2009," Energies, MDPI, vol. 9(7), pages 1-29, June.
    11. Victor Court, 2019. "An Estimation of Different Minimum Exergy Return Ratios Required for Society," Biophysical Economics and Resource Quality, Springer, vol. 4(3), pages 1-13, September.
    12. Byers, Edward A. & Gasparatos, Alexandros & Serrenho, André C., 2015. "A framework for the exergy analysis of future transport pathways: Application for the United Kingdom transport system 2010–2050," Energy, Elsevier, vol. 88(C), pages 849-862.
    13. Santos, João & Borges, Afonso S. & Domingos, Tiago, 2021. "Exploring the links between total factor productivity and energy efficiency: Portugal, 1960–2014," Energy Economics, Elsevier, vol. 101(C).
    14. Aramendia, Emmanuel & Brockway, Paul E. & Pizzol, Massimo & Heun, Matthew K., 2021. "Moving from final to useful stage in energy-economy analysis: A critical assessment," Applied Energy, Elsevier, vol. 283(C).
    15. Santos, João & Borges, Afonso & Domingos, Tiago, 2020. "Exploring the links between total factor productivity, final-to-useful exergy efficiency, and economic growth: Case study Portugal 1960-2014," MPRA Paper 100214, University Library of Munich, Germany.
    16. Raúl Arango-Miranda & Robert Hausler & Rabindranarth Romero-López & Mathias Glaus & Sara Patricia Ibarra-Zavaleta, 2018. "An Overview of Energy and Exergy Analysis to the Industrial Sector, a Contribution to Sustainability," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    17. Dai, Jing & Fath, Brian & Chen, Bin, 2012. "Constructing a network of the social-economic consumption system of China using extended exergy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4796-4808.
    18. Qi, Hai & Dong, Zhiliang & Dong, Shaohui & Sun, Xiaotian & Zhao, Yiran & Li, Yu, 2021. "Extended exergy accounting for smelting and pressing of metals industry in China," Resources Policy, Elsevier, vol. 74(C).
    19. Zhang, Bo & Chen, G.Q., 2010. "Physical sustainability assessment for the China society: Exergy-based systems account for resources use and environmental emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1527-1545, August.
    20. An, Qier & An, Haizhong & Wang, Lang & Huang, Xuan, 2014. "Structural and regional variations of natural resource production in China based on exergy," Energy, Elsevier, vol. 74(C), pages 67-77.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:534-:d:204256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.