IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i23p4484-d290646.html
   My bibliography  Save this article

A Widespread Review of Smart Grids Towards Smart Cities

Author

Listed:
  • Mina Farmanbar

    (Faculty of Science and Technology, Engineering, University of Stavanger, 4036 Stavanger, Norway)

  • Kiyan Parham

    (Faculty of Science and Technology, Engineering, University of Stavanger, 4036 Stavanger, Norway)

  • Øystein Arild

    (Faculty of Science and Technology, Engineering, University of Stavanger, 4036 Stavanger, Norway)

  • Chunming Rong

    (Faculty of Science and Technology, Engineering, University of Stavanger, 4036 Stavanger, Norway)

Abstract

Nowadays, the importance of energy management and optimization by means of smart devices has arisen as an important issue. On the other hand, the intelligent application of smart devices stands as a key element in establishing smart cities, which have been suggested as the solution to complicated future urbanization difficulties in coming years. Considering the scarcity of traditional fossil fuels in the near future, besides their ecological problems the new smart grids have demonstrated the potential to merge the non-renewable and renewable energy resources into each other leading to the reduction of environmental problems and optimizing operating costs. The current paper clarifies the importance of smart grids in launching smart cities by reviewing the advancement of micro/nano grids, applications of renewable energies, energy-storage technologies, smart water grids in smart cities. Additionally a review of the major European smart city projects has been carried out. These will offer a wider vision for researchers in the operation, monitoring, control and audit of smart-grid systems.

Suggested Citation

  • Mina Farmanbar & Kiyan Parham & Øystein Arild & Chunming Rong, 2019. "A Widespread Review of Smart Grids Towards Smart Cities," Energies, MDPI, vol. 12(23), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4484-:d:290646
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/23/4484/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/23/4484/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eunice Espe & Vidyasagar Potdar & Elizabeth Chang, 2018. "Prosumer Communities and Relationships in Smart Grids: A Literature Review, Evolution and Future Directions," Energies, MDPI, vol. 11(10), pages 1-24, September.
    2. Batista, N.C. & Melício, R. & Matias, J.C.O. & Catalão, J.P.S., 2013. "Photovoltaic and wind energy systems monitoring and building/home energy management using ZigBee devices within a smart grid," Energy, Elsevier, vol. 49(C), pages 306-315.
    3. Crespo Del Granado, Pedro & Pang, Zhan & Wallace, Stein W., 2016. "Synergy of smart grids and hybrid distributed generation on the value of energy storage," Applied Energy, Elsevier, vol. 170(C), pages 476-488.
    4. Mathias Uslar & Sebastian Rohjans & Christian Neureiter & Filip Pröstl Andrén & Jorge Velasquez & Cornelius Steinbrink & Venizelos Efthymiou & Gianluigi Migliavacca & Seppo Horsmanheimo & Helfried Bru, 2019. "Applying the Smart Grid Architecture Model for Designing and Validating System-of-Systems in the Power and Energy Domain: A European Perspective," Energies, MDPI, vol. 12(2), pages 1-40, January.
    5. Robert G. Hollands, 2008. "Will the real smart city please stand up?," City, Taylor & Francis Journals, vol. 12(3), pages 303-320, December.
    6. Seongjoon Byeon & Gyewoon Choi & Seungjin Maeng & Philippe Gourbesville, 2015. "Sustainable Water Distribution Strategy with Smart Water Grid," Sustainability, MDPI, vol. 7(4), pages 1-20, April.
    7. Broeer, Torsten & Fuller, Jason & Tuffner, Francis & Chassin, David & Djilali, Ned, 2014. "Modeling framework and validation of a smart grid and demand response system for wind power integration," Applied Energy, Elsevier, vol. 113(C), pages 199-207.
    8. David Lindley, 2010. "Smart grids: The energy storage problem," Nature, Nature, vol. 463(7277), pages 18-20, January.
    9. Lizana, Jesus & Friedrich, Daniel & Renaldi, Renaldi & Chacartegui, Ricardo, 2018. "Energy flexible building through smart demand-side management and latent heat storage," Applied Energy, Elsevier, vol. 230(C), pages 471-485.
    10. Luis Hernández-Callejo, 2019. "A Comprehensive Review of Operation and Control, Maintenance and Lifespan Management, Grid Planning and Design, and Metering in Smart Grids," Energies, MDPI, vol. 12(9), pages 1-50, April.
    11. Beyrami, Javid & Chitsaz, Ata & Parham, Kiyan & Arild, Øystein, 2019. "Optimum performance of a single effect desalination unit integrated with a SOFC system by multi-objective thermo-economic optimization based on genetic algorithm," Energy, Elsevier, vol. 186(C).
    12. Nagender Kumar Suryadevara & Gyan Ranjan Biswal, 2019. "Smart Plugs: Paradigms and Applications in the Smart City-and-Smart Grid," Energies, MDPI, vol. 12(10), pages 1-20, May.
    13. Seyedeh Narjes Fallah & Ravinesh Chand Deo & Mohammad Shojafar & Mauro Conti & Shahaboddin Shamshirband, 2018. "Computational Intelligence Approaches for Energy Load Forecasting in Smart Energy Management Grids: State of the Art, Future Challenges, and Research Directions," Energies, MDPI, vol. 11(3), pages 1-31, March.
    14. Coelho, Vitor N. & Coelho, Igor M. & Coelho, Bruno N. & de Oliveira, Glauber C. & Barbosa, Alexandre C. & Pereira, Leo & de Freitas, Alan & Santos, Haroldo G. & Ochi, Luis S. & Guimarães, Frederico G., 2017. "A communitarian microgrid storage planning system inside the scope of a smart city," Applied Energy, Elsevier, vol. 201(C), pages 371-381.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Houssem Rafik Al-Hana Bouchekara & Mohammad Shoaib Shahriar & Muhammad Sharjeel Javaid & Yusuf Abubakar Sha’aban & Makbul Anwari Muhammad Ramli, 2021. "Multi-Objective Optimization of a Hybrid Nanogrid/Microgrid: Application to Desert Camps in Hafr Al-Batin," Energies, MDPI, vol. 14(5), pages 1-24, February.
    2. Aravindi Samarakkody & Dilanthi Amaratunga & Richard Haigh, 2023. "Technological Innovations for Enhancing Disaster Resilience in Smart Cities: A Comprehensive Urban Scholar’s Analysis," Sustainability, MDPI, vol. 15(15), pages 1-22, August.
    3. Castellini, Marta & Di Corato, Luca & Moretto, Michele & Vergalli, Sergio, 2021. "Energy exchange among heterogeneous prosumers under price uncertainty," Energy Economics, Elsevier, vol. 104(C).
    4. Ramsebner, J. & Haas, R. & Auer, H. & Ajanovic, A. & Gawlik, W. & Maier, C. & Nemec-Begluk, S. & Nacht, T. & Puchegger, M., 2021. "From single to multi-energy and hybrid grids: Historic growth and future vision," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Angel A. Juan & Majsa Ammouriova & Veronika Tsertsvadze & Celia Osorio & Noelia Fuster & Yusef Ahsini, 2023. "Promoting Energy Efficiency and Emissions Reduction in Urban Areas with Key Performance Indicators and Data Analytics," Energies, MDPI, vol. 16(20), pages 1-19, October.
    6. Shabana Urooj & Fadwa Alrowais & Yuvaraja Teekaraman & Hariprasath Manoharan & Ramya Kuppusamy, 2021. "IoT Based Electric Vehicle Application Using Boosting Algorithm for Smart Cities," Energies, MDPI, vol. 14(4), pages 1-16, February.
    7. Vinoth Kumar Ponnusamy & Padmanathan Kasinathan & Rajvikram Madurai Elavarasan & Vinoth Ramanathan & Ranjith Kumar Anandan & Umashankar Subramaniam & Aritra Ghosh & Eklas Hossain, 2021. "A Comprehensive Review on Sustainable Aspects of Big Data Analytics for the Smart Grid," Sustainability, MDPI, vol. 13(23), pages 1-35, December.
    8. Kristina Perić & Zdenko Šimić & Željko Jurić, 2022. "Characterization of Uncertainties in Smart City Planning: A Case Study of the Smart Metering Deployment," Energies, MDPI, vol. 15(6), pages 1-29, March.
    9. Fatemehsadat Mirshafiee & Emad Shahbazi & Mohadeseh Safi & Rituraj Rituraj, 2023. "Predicting Power and Hydrogen Generation of a Renewable Energy Converter Utilizing Data-Driven Methods: A Sustainable Smart Grid Case Study," Energies, MDPI, vol. 16(1), pages 1-20, January.
    10. Ilja Nastjuk & Simon Trang & Elpiniki I. Papageorgiou, 2022. "Smart cities and smart governance models for future cities," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(4), pages 1917-1924, December.
    11. Vidya Krishnan Mololoth & Saguna Saguna & Christer Åhlund, 2023. "Blockchain and Machine Learning for Future Smart Grids: A Review," Energies, MDPI, vol. 16(1), pages 1-39, January.
    12. Kalina Grzesiuk & Dorota Jegorow & Monika Wawer & Anna Głowacz, 2023. "Energy-Efficient City Transportation Solutions in the Context of Energy-Conserving and Mobility Behaviours of Generation Z," Energies, MDPI, vol. 16(15), pages 1-28, August.
    13. Clement, Jessica & Ruysschaert, Benoit & Crutzen, Nathalie, 2023. "Smart city strategies – A driver for the localization of the sustainable development goals?," Ecological Economics, Elsevier, vol. 213(C).
    14. Natthanan Tangsunantham & Chaiyod Pirak, 2022. "Experimental Performance Analysis of Wi-SUN Channel Modelling Applied to Smart Grid Applications," Energies, MDPI, vol. 15(7), pages 1-15, March.
    15. Guillermo Tapia-Tinoco & David Granados-Lieberman & David A. Rodriguez-Alejandro & Martin Valtierra-Rodriguez & Arturo Garcia-Perez, 2020. "A Robust Electric Spring Model and Modified Backward Forward Solution Method for Microgrids with Distributed Generation," Mathematics, MDPI, vol. 8(8), pages 1-32, August.
    16. Rozmysław Mieński & Przemysław Urbanek & Irena Wasiak, 2021. "Using Energy Storage Inverters of Prosumer Installations for Voltage Control in Low-Voltage Distribution Networks," Energies, MDPI, vol. 14(4), pages 1-21, February.
    17. Berghout, Tarek & Benbouzid, Mohamed, 2022. "EL-NAHL: Exploring labels autoencoding in augmented hidden layers of feedforward neural networks for cybersecurity in smart grids," Reliability Engineering and System Safety, Elsevier, vol. 226(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kanakadhurga, Dharmaraj & Prabaharan, Natarajan, 2022. "Demand side management in microgrid: A critical review of key issues and recent trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Korkas, Christos D. & Baldi, Simone & Michailidis, Iakovos & Kosmatopoulos, Elias B., 2015. "Intelligent energy and thermal comfort management in grid-connected microgrids with heterogeneous occupancy schedule," Applied Energy, Elsevier, vol. 149(C), pages 194-203.
    3. de Oliveira, Glauber Cardoso & Bertone, Edoardo & Stewart, Rodney A., 2022. "Optimisation modelling tools and solving techniques for integrated precinct-scale energy–water system planning," Applied Energy, Elsevier, vol. 318(C).
    4. Mussawir Ul Mehmood & Abasin Ulasyar & Abraiz Khattak & Kashif Imran & Haris Sheh Zad & Shibli Nisar, 2020. "Cloud Based IoT Solution for Fault Detection and Localization in Power Distribution Systems," Energies, MDPI, vol. 13(11), pages 1-19, May.
    5. Bogdan-Constantin Neagu & Ovidiu Ivanov & Gheorghe Grigoras & Mihai Gavrilas, 2020. "A New Vision on the Prosumers Energy Surplus Trading Considering Smart Peer-to-Peer Contracts," Mathematics, MDPI, vol. 8(2), pages 1-27, February.
    6. Andreolli, Francesca & D’Alpaos, Chiara & Moretto, Michele, 2022. "Valuing investments in domestic PV-Battery Systems under uncertainty," Energy Economics, Elsevier, vol. 106(C).
    7. Korkas, Christos D. & Baldi, Simone & Michailidis, Iakovos & Kosmatopoulos, Elias B., 2016. "Occupancy-based demand response and thermal comfort optimization in microgrids with renewable energy sources and energy storage," Applied Energy, Elsevier, vol. 163(C), pages 93-104.
    8. Tuba Bakıcı & Esteve Almirall & Jonathan Wareham, 2013. "A Smart City Initiative: the Case of Barcelona," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 4(2), pages 135-148, June.
    9. Andrew Clarke & Lynda Cheshire, 2018. "The post-political state? The role of administrative reform in managing tensions between urban growth and liveability in Brisbane, Australia," Urban Studies, Urban Studies Journal Limited, vol. 55(16), pages 3545-3562, December.
    10. Paola Panuccio, 2019. "Smart Planning: From City to Territorial System," Sustainability, MDPI, vol. 11(24), pages 1-15, December.
    11. Maharjan, Pukar & Salauddin, Md & Cho, Hyunok & Park, Jae Yeong, 2018. "An indoor power line based magnetic field energy harvester for self-powered wireless sensors in smart home applications," Applied Energy, Elsevier, vol. 232(C), pages 398-408.
    12. Park, Sung-Won & Zhang, Zhong & Li, Furong & Son, Sung-Yong, 2021. "Peer-to-peer trading-based efficient flexibility securing mechanism to support distribution system stability," Applied Energy, Elsevier, vol. 285(C).
    13. Ijaz Ul Haq & Amin Ullah & Samee Ullah Khan & Noman Khan & Mi Young Lee & Seungmin Rho & Sung Wook Baik, 2021. "Sequential Learning-Based Energy Consumption Prediction Model for Residential and Commercial Sectors," Mathematics, MDPI, vol. 9(6), pages 1-17, March.
    14. Muhammad Atiq Ur Rehman Tariq & Alavaiola Faumatu & Maha Hussein & Muhammad Laiq Ur Rahman Shahid & Nitin Muttil, 2020. "Smart City-Ranking of Major Australian Cities to Achieve a Smarter Future," Sustainability, MDPI, vol. 12(7), pages 1-19, April.
    15. Alfredo Alcayde & Raul Baños & Francisco M. Arrabal-Campos & Francisco G. Montoya, 2019. "Optimization of the Contracted Electric Power by Means of Genetic Algorithms," Energies, MDPI, vol. 12(7), pages 1-13, April.
    16. Sabina Baraniewicz-Kotasińska, 2022. "The Scandinavian Third Way as a Proposal for Sustainable Smart City Development—A Case Study of Aarhus City," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
    17. Kolasa, Piotr & Janowski, Mirosław, 2017. "Study of possibilities to store energy virtually in a grid (VESS) with the use of smart metering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1513-1517.
    18. Ari-Veikko Anttiroiko, 2016. "City-as-a-Platform: The Rise of Participatory Innovation Platforms in Finnish Cities," Sustainability, MDPI, vol. 8(9), pages 1-31, September.
    19. Anthony McLean & Harriet Bulkeley & Mike Crang, 2016. "Negotiating the urban smart grid: Socio-technical experimentation in the city of Austin," Urban Studies, Urban Studies Journal Limited, vol. 53(15), pages 3246-3263, November.
    20. Baeten, Brecht & Confrey, Thomas & Pecceu, Sébastien & Rogiers, Frederik & Helsen, Lieve, 2016. "A validated model for mixing and buoyancy in stratified hot water storage tanks for use in building energy simulations," Applied Energy, Elsevier, vol. 172(C), pages 217-229.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4484-:d:290646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.