IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p1072-d501465.html
   My bibliography  Save this article

IoT Based Electric Vehicle Application Using Boosting Algorithm for Smart Cities

Author

Listed:
  • Shabana Urooj

    (Department of Electrical Engineering, College of Engineering, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia)

  • Fadwa Alrowais

    (Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia)

  • Yuvaraja Teekaraman

    (MOBI-Mobility, Logitics and Automative Technology Research Centre, Vrije Universiteit Brussels, 1050 Ixelles, Belgium)

  • Hariprasath Manoharan

    (Department of Electronics and Communication Engineering, Audisankara College of Engineering and Technology, Gudur 524 101, India)

  • Ramya Kuppusamy

    (Department of Electrical and Electronics Engineering, Sri Sairam College of Engineering, Bangalore City 562 106, India)

Abstract

The application of Internet of Things (IoT) has been emerging as a new platform in wireless technologies primarily in the field of designing electric vehicles. To overcome all issues in existing vehicles and for protecting the environment, electric vehicles should be introduced by integrating an intellectual device called sensor all over the body of electric vehicle with less cost. Therefore, this article confers the need and importance of introducing electric vehicles with IoT based technology which monitors the battery life of electric vehicles. Since the electric vehicles are implemented with internet, an online monitoring system which is called Things Speak has been used for monitoring all the vehicles in a continuous manner (day-by-day). These online results will then be visualized in MATLAB after an effective boosting algorithm is integrated with objective function. The efficiency of proposed method is tested by visual analysis and performance results prove that the projected method on electric vehicle is improved when using IoT based technology. It is also observed that cost of implementation is lesser and capacity of electric vehicle is increased to about 74.3% after continuous monitoring with sensors.

Suggested Citation

  • Shabana Urooj & Fadwa Alrowais & Yuvaraja Teekaraman & Hariprasath Manoharan & Ramya Kuppusamy, 2021. "IoT Based Electric Vehicle Application Using Boosting Algorithm for Smart Cities," Energies, MDPI, vol. 14(4), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1072-:d:501465
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/1072/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/1072/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mina Farmanbar & Kiyan Parham & Øystein Arild & Chunming Rong, 2019. "A Widespread Review of Smart Grids Towards Smart Cities," Energies, MDPI, vol. 12(23), pages 1-18, November.
    2. Naser Hossein Motlagh & Mahsa Mohammadrezaei & Julian Hunt & Behnam Zakeri, 2020. "Internet of Things (IoT) and the Energy Sector," Energies, MDPI, vol. 13(2), pages 1-27, January.
    3. Bogdan Cristian Florea & Dragos Daniel Taralunga, 2020. "Blockchain IoT for Smart Electric Vehicles Battery Management," Sustainability, MDPI, vol. 12(10), pages 1-25, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Armin Razmjoo & Meysam Majidi Nezhad & Lisa Gakenia Kaigutha & Mousa Marzband & Seyedali Mirjalili & Mehdi Pazhoohesh & Saim Memon & Mehdi A. Ehyaei & Giuseppe Piras, 2021. "Investigating Smart City Development Based on Green Buildings, Electrical Vehicles and Feasible Indicators," Sustainability, MDPI, vol. 13(14), pages 1-14, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramsebner, J. & Haas, R. & Auer, H. & Ajanovic, A. & Gawlik, W. & Maier, C. & Nemec-Begluk, S. & Nacht, T. & Puchegger, M., 2021. "From single to multi-energy and hybrid grids: Historic growth and future vision," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Vinoth Kumar Ponnusamy & Padmanathan Kasinathan & Rajvikram Madurai Elavarasan & Vinoth Ramanathan & Ranjith Kumar Anandan & Umashankar Subramaniam & Aritra Ghosh & Eklas Hossain, 2021. "A Comprehensive Review on Sustainable Aspects of Big Data Analytics for the Smart Grid," Sustainability, MDPI, vol. 13(23), pages 1-35, December.
    3. Marta Biegańska, 2022. "IoT-Based Decentralized Energy Systems," Energies, MDPI, vol. 15(21), pages 1-20, October.
    4. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    5. Athanasios Tsipis & Asterios Papamichail & Ioannis Angelis & George Koufoudakis & Georgios Tsoumanis & Konstantinos Oikonomou, 2020. "An Alertness-Adjustable Cloud/Fog IoT Solution for Timely Environmental Monitoring Based on Wildfire Risk Forecasting," Energies, MDPI, vol. 13(14), pages 1-35, July.
    6. Abdul Hasib Siddique & Mehedi Hasan & Sharnali Islam & Khalid Rashid, 2021. "Prospective Smart Distribution Substation in Bangladesh: Modeling and Analysis," Sustainability, MDPI, vol. 13(19), pages 1-20, September.
    7. Germán Arana-Landín & Naiara Uriarte-Gallastegi & Beñat Landeta-Manzano & Iker Laskurain-Iturbe, 2023. "The Contribution of Lean Management—Industry 4.0 Technologies to Improving Energy Efficiency," Energies, MDPI, vol. 16(5), pages 1-19, February.
    8. Özden Tozanlı & Elif Kongar & Surendra M. Gupta, 2020. "Evaluation of Waste Electronic Product Trade-in Strategies in Predictive Twin Disassembly Systems in the Era of Blockchain," Sustainability, MDPI, vol. 12(13), pages 1-33, July.
    9. M. Usman Saleem & Mustafa Shakir & M. Rehan Usman & M. Hamza Tahir Bajwa & Noman Shabbir & Payam Shams Ghahfarokhi & Kamran Daniel, 2023. "Integrating Smart Energy Management System with Internet of Things and Cloud Computing for Efficient Demand Side Management in Smart Grids," Energies, MDPI, vol. 16(12), pages 1-21, June.
    10. Joaquim Amândio Azevedo & Filipe Edgar Santos, 2021. "A More Efficient Technique to Power Home Monitoring Systems Using Controlled Battery Charging," Energies, MDPI, vol. 14(13), pages 1-16, June.
    11. Akhil Joseph & Patil Balachandra, 2020. "Energy Internet, the Future Electricity System: Overview, Concept, Model Structure, and Mechanism," Energies, MDPI, vol. 13(16), pages 1-26, August.
    12. Sheeraz Kirmani & Abdul Mazid & Irfan Ahmad Khan & Manaullah Abid, 2022. "A Survey on IoT-Enabled Smart Grids: Technologies, Architectures, Applications, and Challenges," Sustainability, MDPI, vol. 15(1), pages 1-26, December.
    13. Houssem Rafik Al-Hana Bouchekara & Mohammad Shoaib Shahriar & Muhammad Sharjeel Javaid & Yusuf Abubakar Sha’aban & Makbul Anwari Muhammad Ramli, 2021. "Multi-Objective Optimization of a Hybrid Nanogrid/Microgrid: Application to Desert Camps in Hafr Al-Batin," Energies, MDPI, vol. 14(5), pages 1-24, February.
    14. Olga Pilipczuk, 2020. "Sustainable Smart Cities and Energy Management: The Labor Market Perspective," Energies, MDPI, vol. 13(22), pages 1-24, November.
    15. Zhihui He & Lei Ning & Baihui Jiang & Jiajia Li & Xin Wang, 2023. "Vehicle Intersections Prediction Based on Markov Model with Variable Weight Optimization," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    16. Castellini, Marta & Di Corato, Luca & Moretto, Michele & Vergalli, Sergio, 2021. "Energy exchange among heterogeneous prosumers under price uncertainty," Energy Economics, Elsevier, vol. 104(C).
    17. Fahad M. Almasoudi, 2023. "Grid Distribution Fault Occurrence and Remedial Measures Prediction/Forecasting through Different Deep Learning Neural Networks by Using Real Time Data from Tabuk City Power Grid," Energies, MDPI, vol. 16(3), pages 1-20, January.
    18. Shivaji Karad & Ritula Thakur, 2021. "Efficient monitoring and control of wind energy conversion systems using Internet of things (IoT): a comprehensive review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14197-14214, October.
    19. Radu Lupu & Adrian Cantemir Călin & Cristina Georgiana Zeldea & Iulia Lupu, 2021. "Systemic Risk Spillovers in the European Energy Sector," Energies, MDPI, vol. 14(19), pages 1-23, October.
    20. Jinjing An & Guoping Chen & Zhuo Zou & Yaojie Sun & Ran Liu & Lirong Zheng, 2021. "An IoT-Based Traceability Platform for Wind Turbines," Energies, MDPI, vol. 14(9), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1072-:d:501465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.