IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i10p3984-d357549.html
   My bibliography  Save this article

Blockchain IoT for Smart Electric Vehicles Battery Management

Author

Listed:
  • Bogdan Cristian Florea

    (Faculty of Electronics, Telecommunications and Information Technology, Politehnica University of Bucharest, 061071 Bucharest, Romania
    These authors contributed equally to this work.)

  • Dragos Daniel Taralunga

    (Faculty of Electronics, Telecommunications and Information Technology, Politehnica University of Bucharest, 061071 Bucharest, Romania
    These authors contributed equally to this work.)

Abstract

Electric Vehicles (EVs) have generated a lot of interest in recent years, due to the advances in battery life and low pollution. Similarly, the expansion of the Internet of Things (IoT) allowed more and more devices to be interconnected. One major problem EVs face today is the limited range of the battery and the limited number of charging or battery swapping stations. A solution is to not only build the necessary infrastructure, but also to be able to correctly estimate the remaining power using an efficient battery management system (BMS). For some EVs, battery swapping can also be an option, either at registered stations, or even directly from other EV drivers. Thus, a network of EV information is required, so that a successful battery charge or swap can be made available for drivers. In this paper two blockchain implementations for an EV BMS are presented, using blockchain as the network and data layer of the application. The first implementation uses Ethereum as the blockchain framework for developing smart contracts, while the second uses a directed acyclic graph (DAG), on top of the IOTA tangle. The two approaches are implemented and compared, demonstrating that both platforms can provide a viable solution for an efficient, semi-decentralized, data-driven BMS.

Suggested Citation

  • Bogdan Cristian Florea & Dragos Daniel Taralunga, 2020. "Blockchain IoT for Smart Electric Vehicles Battery Management," Sustainability, MDPI, vol. 12(10), pages 1-25, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:10:p:3984-:d:357549
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/10/3984/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/10/3984/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yong, Jia Ying & Ramachandaramurthy, Vigna K. & Tan, Kang Miao & Mithulananthan, N., 2015. "A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 365-385.
    2. Han Liu & Linlin Tan & Xueliang Huang & Ming Zhang & Zhenxing Zhang & Jiacheng Li, 2019. "Power Stabilization based on Switching Control of Segmented Transmitting Coils for Multi Loads in Static-Dynamic Hybrid Wireless Charging System at Traffic Lights," Energies, MDPI, vol. 12(4), pages 1-19, February.
    3. Jiani Wu & Nguyen Khoi Tran, 2018. "Application of Blockchain Technology in Sustainable Energy Systems: An Overview," Sustainability, MDPI, vol. 10(9), pages 1-22, August.
    4. Jian Wang & Qianggang Wang & Niancheng Zhou & Yuan Chi, 2017. "A Novel Electricity Transaction Mode of Microgrids Based on Blockchain and Continuous Double Auction," Energies, MDPI, vol. 10(12), pages 1-22, November.
    5. Stefan Helber & Justine Broihan & Young Jae Jang & Peter Hecker & Thomas Feuerle, 2018. "Location Planning for Dynamic Wireless Charging Systems for Electric Airport Passenger Buses," Energies, MDPI, vol. 11(2), pages 1-16, January.
    6. Bumho Son & Jaewook Lee & Huisu Jang, 2020. "A Scalable IoT Protocol via an Efficient DAG-Based Distributed Ledger Consensus," Sustainability, MDPI, vol. 12(4), pages 1-11, February.
    7. Sarmadullah Khan & Rafiullah Khan, 2018. "Multiple Authorities Attribute-Based Verification Mechanism for Blockchain Mircogrid Transactions," Energies, MDPI, vol. 11(5), pages 1-13, May.
    8. Ruifeng Zhang & Bizhong Xia & Baohua Li & Libo Cao & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang, 2018. "State of the Art of Lithium-Ion Battery SOC Estimation for Electrical Vehicles," Energies, MDPI, vol. 11(7), pages 1-36, July.
    9. Yu Miao & Patrick Hynan & Annette von Jouanne & Alexandre Yokochi, 2019. "Current Li-Ion Battery Technologies in Electric Vehicles and Opportunities for Advancements," Energies, MDPI, vol. 12(6), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ciprian Mihai Coman & Adriana Florescu & Constantin Daniel Oancea, 2021. "Assessment of Energy Use Based on an Implementation of IoT, Cloud Systems, and Artificial Intelligence," Energies, MDPI, vol. 14(11), pages 1-21, May.
    2. Özden Tozanlı & Elif Kongar & Surendra M. Gupta, 2020. "Evaluation of Waste Electronic Product Trade-in Strategies in Predictive Twin Disassembly Systems in the Era of Blockchain," Sustainability, MDPI, vol. 12(13), pages 1-33, July.
    3. Dai, Haifeng & Jiang, Bo & Hu, Xiaosong & Lin, Xianke & Wei, Xuezhe & Pecht, Michael, 2021. "Advanced battery management strategies for a sustainable energy future: Multilayer design concepts and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    4. Shabana Urooj & Fadwa Alrowais & Yuvaraja Teekaraman & Hariprasath Manoharan & Ramya Kuppusamy, 2021. "IoT Based Electric Vehicle Application Using Boosting Algorithm for Smart Cities," Energies, MDPI, vol. 14(4), pages 1-16, February.
    5. Walied Alharbi, 2023. "Assessment of Distribution System Margins Considering Battery Swapping Stations," Sustainability, MDPI, vol. 15(8), pages 1-13, April.
    6. Marta Biegańska, 2022. "IoT-Based Decentralized Energy Systems," Energies, MDPI, vol. 15(21), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    2. Yongxiu He & Wei Xiong & Binyou Yang & Hai-yan Yang & Jiu-fang Zhou & Ming-li Cui & Yan Li, 2022. "Combined game model and investment decision making of power grid-distributed energy system," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8667-8690, June.
    3. Lin-Yun Huang & Jian-Feng Cai & Tien-Chen Lee & Min-Hang Weng, 2020. "A Study on the Development Trends of the Energy System with Blockchain Technology Using Patent Analysis," Sustainability, MDPI, vol. 12(5), pages 1-19, March.
    4. Miguel Carpintero-Rentería & David Santos-Martín & Josep M. Guerrero, 2019. "Microgrids Literature Review through a Layers Structure," Energies, MDPI, vol. 12(22), pages 1-22, November.
    5. Brilliantova, Vlada & Thurner, Thomas Wolfgang, 2019. "Blockchain and the future of energy," Technology in Society, Elsevier, vol. 57(C), pages 38-45.
    6. Mattia Stighezza & Valentina Bianchi & Ilaria De Munari, 2021. "FPGA Implementation of an Ant Colony Optimization Based SVM Algorithm for State of Charge Estimation in Li-Ion Batteries," Energies, MDPI, vol. 14(21), pages 1-12, October.
    7. Desreveaux, A. & Bouscayrol, A. & Trigui, R. & Hittinger, E. & Castex, E. & Sirbu, G.M., 2023. "Accurate energy consumption for comparison of climate change impact of thermal and electric vehicles," Energy, Elsevier, vol. 268(C).
    8. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    9. Anisa Surya Wijareni & Hendri Widiyandari & Agus Purwanto & Aditya Farhan Arif & Mohammad Zaki Mubarok, 2022. "Morphology and Particle Size of a Synthesized NMC 811 Cathode Precursor with Mixed Hydroxide Precipitate and Nickel Sulfate as Nickel Sources and Comparison of Their Electrochemical Performances in an," Energies, MDPI, vol. 15(16), pages 1-15, August.
    10. Alexandru Ciocan & Cosmin Ungureanu & Alin Chitu & Elena Carcadea & George Darie, 2020. "Electrical Longboard for Everyday Urban Commuting," Sustainability, MDPI, vol. 12(19), pages 1-14, September.
    11. Ning Wang & Weisheng Xu & Weihui Shao & Zhiyu Xu, 2019. "A Q-Cube Framework of Reinforcement Learning Algorithm for Continuous Double Auction among Microgrids," Energies, MDPI, vol. 12(15), pages 1-26, July.
    12. Piotr Krawczyk & Anna Śliwińska, 2020. "Eco-Efficiency Assessment of the Application of Large-Scale Rechargeable Batteries in a Coal-Fired Power Plant," Energies, MDPI, vol. 13(6), pages 1-16, March.
    13. Ernest Barceló & Katarina Dimić-Mišić & Monir Imani & Vesna Spasojević Brkić & Michael Hummel & Patrick Gane, 2023. "Regulatory Paradigm and Challenge for Blockchain Integration of Decentralized Systems: Example—Renewable Energy Grids," Sustainability, MDPI, vol. 15(3), pages 1-27, January.
    14. Al-Zareer, Maan & Dincer, Ibrahim & Rosen, Marc A., 2019. "Comparative assessment of new liquid-to-vapor type battery cooling systems," Energy, Elsevier, vol. 188(C).
    15. Liu, Hu-Chen & You, Xiao-Yue & Xue, Yi-Xi & Luan, Xue, 2017. "Exploring critical factors influencing the diffusion of electric vehicles in China: A multi-stakeholder perspective," Research in Transportation Economics, Elsevier, vol. 66(C), pages 46-58.
    16. Ahl, A. & Yarime, M. & Goto, M. & Chopra, Shauhrat S. & Kumar, Nallapaneni Manoj. & Tanaka, K. & Sagawa, D., 2020. "Exploring blockchain for the energy transition: Opportunities and challenges based on a case study in Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    17. Wu, Yingwen & Ji, Yangjian, 2023. "Identifying firm-specific technology opportunities from the perspective of competitors by using association rule mining," Journal of Informetrics, Elsevier, vol. 17(2).
    18. Hong-Chao Gao & Joon-Ho Choi & Sang-Yun Yun & Seon-Ju Ahn, 2020. "A New Power Sharing Scheme of Multiple Microgrids and an Iterative Pairing-Based Scheduling Method," Energies, MDPI, vol. 13(7), pages 1-20, April.
    19. Das, H.S. & Rahman, M.M. & Li, S. & Tan, C.W., 2020. "Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    20. Cassetta, Ernesto & Marra, Alessandro & Pozzi, Cesare & Antonelli, Paola, 2017. "Emerging technological trajectories and new mobility solutions. A large-scale investigation on transport-related innovative start-ups and implications for policy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 1-11.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:10:p:3984-:d:357549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.