IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i15p12036-d1211534.html
   My bibliography  Save this article

Technological Innovations for Enhancing Disaster Resilience in Smart Cities: A Comprehensive Urban Scholar’s Analysis

Author

Listed:
  • Aravindi Samarakkody

    (Global Disaster Resilience Centre, University of Huddersfield, Huddersfield HD1 3DH, UK)

  • Dilanthi Amaratunga

    (Global Disaster Resilience Centre, University of Huddersfield, Huddersfield HD1 3DH, UK)

  • Richard Haigh

    (Global Disaster Resilience Centre, University of Huddersfield, Huddersfield HD1 3DH, UK)

Abstract

Despite advancements, Smart Cities encounter hazards. Smart Cities’ higher reliance on interconnected systems and networks makes them susceptible to risks beyond conventional ones, leading to cascading effects. Hence, the effective use of technological innovations is vital. This effective use involves understanding the existing use of technology innovations for resilience making in Smart Cities and the wise utilisation of them as suitable for different contexts. However, there is a research gap for a fundamental study that synthesises the emerging and disruptive technologies that are being used to improve the disaster resilience in Smart Cities and how they can be classified. Therefore, this research aimed to address that need, so that a Smart City evaluating the technologies/tools for disaster resilience could wisely utilise the available resources and prioritise the most suitable for their context-specific needs. Following a comprehensive literature review, the study identified 24 technologies and/or tools for creating, sustaining, and enhancing the resilience within Smart Cities. In doing so, they should collect and manage citywide geodata and foster public participation. While the wise utilisation of the most suitable and feasible tools and technologies is a measure of smartness in a Smart City, the findings suggested four key factors with which these technologies could be assessed. These four factors included impact on society, the adoption speed by Smart Cities, the maturity of the technology, and the capabilities offered to the community.

Suggested Citation

  • Aravindi Samarakkody & Dilanthi Amaratunga & Richard Haigh, 2023. "Technological Innovations for Enhancing Disaster Resilience in Smart Cities: A Comprehensive Urban Scholar’s Analysis," Sustainability, MDPI, vol. 15(15), pages 1-22, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:12036-:d:1211534
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/15/12036/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/15/12036/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anastasia Stratigea & Chrysaida-Aliki Papadopoulou & Maria Panagiotopoulou, 2015. "Tools and Technologies for Planning the Development of Smart Cities," Journal of Urban Technology, Taylor & Francis Journals, vol. 22(2), pages 43-62, April.
    2. Fabian Dembski & Uwe Wössner & Mike Letzgus & Michael Ruddat & Claudia Yamu, 2020. "Urban Digital Twins for Smart Cities and Citizens: The Case Study of Herrenberg, Germany," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    3. Sheikh Kamran Abid & Noralfishah Sulaiman & Shiau Wei Chan & Umber Nazir & Muhammad Abid & Heesup Han & Antonio Ariza-Montes & Alejandro Vega-Muñoz, 2021. "Toward an Integrated Disaster Management Approach: How Artificial Intelligence Can Boost Disaster Management," Sustainability, MDPI, vol. 13(22), pages 1-17, November.
    4. Luca Mora & Mark Deakin & Xiaoling Zhang & Michael Batty & Martin de Jong & Paolo Santi & Francesco Paolo Appio, 2021. "Assembling Sustainable Smart City Transitions: An Interdisciplinary Theoretical Perspective," Journal of Urban Technology, Taylor & Francis Journals, vol. 28(1-2), pages 1-27, April.
    5. Margarita Angelidou, 2017. "The Role of Smart City Characteristics in the Plans of Fifteen Cities," Journal of Urban Technology, Taylor & Francis Journals, vol. 24(4), pages 3-28, October.
    6. Mina Farmanbar & Kiyan Parham & Øystein Arild & Chunming Rong, 2019. "A Widespread Review of Smart Grids Towards Smart Cities," Energies, MDPI, vol. 12(23), pages 1-18, November.
    7. Aravindi Samarakkody & Dilanthi Amaratunga & Richard Haigh, 2022. "Characterising Smartness to Make Smart Cities Resilient," Sustainability, MDPI, vol. 14(19), pages 1-19, October.
    8. Jedsada Phengsuwan & Tejal Shah & Nipun Balan Thekkummal & Zhenyu Wen & Rui Sun & Divya Pullarkatt & Hemalatha Thirugnanam & Maneesha Vinodini Ramesh & Graham Morgan & Philip James & Rajiv Ranjan, 2021. "Use of Social Media Data in Disaster Management: A Survey," Future Internet, MDPI, vol. 13(2), pages 1-24, February.
    9. Marco J. Haenssgen & Proochista Ariana, 2018. "The place of technology in the Capability Approach," Oxford Development Studies, Taylor & Francis Journals, vol. 46(1), pages 98-112, January.
    10. Sepasgozar, Samad M.E. & Hawken, Scott & Sargolzaei, Sharifeh & Foroozanfa, Mona, 2019. "Implementing citizen centric technology in developing smart cities: A model for predicting the acceptance of urban technologies," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 105-116.
    11. Ullah, Fahim & Qayyum, Siddra & Thaheem, Muhammad Jamaluddin & Al-Turjman, Fadi & Sepasgozar, Samad M.E., 2021. "Risk management in sustainable smart cities governance: A TOE framework," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    12. Wenjuan Sun & Paolo Bocchini & Brian D. Davison, 2020. "Applications of artificial intelligence for disaster management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 2631-2689, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mora, Luca & Gerli, Paolo & Ardito, Lorenzo & Messeni Petruzzelli, Antonio, 2023. "Smart city governance from an innovation management perspective: Theoretical framing, review of current practices, and future research agenda," Technovation, Elsevier, vol. 123(C).
    2. Clement, Jessica & Ruysschaert, Benoit & Crutzen, Nathalie, 2023. "Smart city strategies – A driver for the localization of the sustainable development goals?," Ecological Economics, Elsevier, vol. 213(C).
    3. Lill Sarv & Ralf-Martin Soe, 2021. "Transition towards Smart City: The Case of Tallinn," Sustainability, MDPI, vol. 13(8), pages 1-18, April.
    4. Kalina Grzesiuk & Dorota Jegorow & Monika Wawer & Anna Głowacz, 2023. "Energy-Efficient City Transportation Solutions in the Context of Energy-Conserving and Mobility Behaviours of Generation Z," Energies, MDPI, vol. 16(15), pages 1-28, August.
    5. Caragliu, Andrea & Del Bo, Chiara F., 2019. "Smart innovative cities: The impact of Smart City policies on urban innovation," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 373-383.
    6. Angelidou, M. & Politis, C. & Panori, A. & Bakratsas, T. & Fellnhofer, K., 2022. "Emerging smart city, transport and energy trends in urban settings: Results of a pan-European foresight exercise with 120 experts," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    7. Brielle Lillywhite & Gregor Wolbring, 2022. "Emergency and Disaster Management, Preparedness, and Planning (EDMPP) and the ‘Social’: A Scoping Review," Sustainability, MDPI, vol. 14(20), pages 1-50, October.
    8. Giovanni Baldi & Antonietta Megaro & Luca Carrubbo, 2022. "Small-Town Citizens’ Technology Acceptance of Smart and Sustainable City Development," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
    9. Haozhi Pan & Si Chen & Yizhao Gao & Brian Deal & Jinfang Liu, 2020. "An urban informatics approach to understanding residential mobility in Metro Chicago," Environment and Planning B, , vol. 47(8), pages 1456-1473, October.
    10. Wioletta Wereda & Natalia Moch & Anna Wachulak, 2021. "The Importance of Stakeholders in Managing a Safe City," Sustainability, MDPI, vol. 14(1), pages 1-17, December.
    11. Marc Ringel, 2021. "Smart City Design Differences: Insights from Decision-Makers in Germany and the Middle East/North-Africa Region," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    12. Seung-Chul Kim & Paul Hong & Taewon Lee & Ayeon Lee & So-Hyun Park, 2022. "Determining Strategic Priorities for Smart City Development: Case Studies of South Korean and International Smart Cities," Sustainability, MDPI, vol. 14(16), pages 1-13, August.
    13. Rodríguez Bolívar, Manuel Pedro & Alcaide Muñoz, Laura & Alcaide Muñoz, Cristina, 2023. "Identifying patterns in smart initiatives' planning in smart cities. An empirical analysis in Spanish smart cities," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    14. Aravindi Samarakkody & Dilanthi Amaratunga & Richard Haigh, 2022. "Characterising Smartness to Make Smart Cities Resilient," Sustainability, MDPI, vol. 14(19), pages 1-19, October.
    15. Radosław Korneć, 2020. "The role of stakeholders in shaping smart solutions in Polish cities," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 7(3), pages 1981-1995, March.
    16. Demokaan Demirel, 2023. "The Impact of Managing Diversity on Building the Smart City A Comparison of Smart City Strategies: Cases From Europe, America, and Asia," SAGE Open, , vol. 13(3), pages 21582440231, July.
    17. Zaheer Allam & David Jones, 2021. "Future (post-COVID) digital, smart and sustainable cities in the wake of 6G: Digital twins, immersive realities and new urban economies," Post-Print hal-03477845, HAL.
    18. Mee Kam Ng & Caglar Koksal & Cecilia Wong & Yuanzhou Tang, 2022. "Smart and Sustainable Development from a Spatial Planning Perspective: The Case of Shenzhen and Greater Manchester," Sustainability, MDPI, vol. 14(6), pages 1-28, March.
    19. Matthew Callcut & Jean-Paul Cerceau Agliozzo & Liz Varga & Lauren McMillan, 2021. "Digital Twins in Civil Infrastructure Systems," Sustainability, MDPI, vol. 13(20), pages 1-32, October.
    20. Ekaterina V. Orlova, 2022. "Design Technology and AI-Based Decision Making Model for Digital Twin Engineering," Future Internet, MDPI, vol. 14(9), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:12036-:d:1211534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.