IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i4p2143-d500811.html
   My bibliography  Save this article

Smart City Design Differences: Insights from Decision-Makers in Germany and the Middle East/North-Africa Region

Author

Listed:
  • Marc Ringel

    (Energy and Environmental Economics, Nuertingen Geislingen University, Technische Universität Darmstadt, Vrije Universiteit Brussel, Parkstr. 4, 73312 Geislingen, Germany)

Abstract

Smart cities offer solutions to environmental, economic, and societal problems in urban agglomerations. We investigate the potential for mutual learning in smart city implementation by comparing German approaches (smaller, local projects) to projects implemented in the MENA region (bigger, national designs). We contrast the outside view on these projects with an inside perspective, surveying key decision-makers in five German and seven MENA smart cities. We assess motivation, technology options, and factors that drive or impede smart city implementation. We find strong similarities in the motives to engage in smart cities, offering common ground for mutual good practice exchange. Energy efficiency solutions and—to a lesser extent—renewable energies are of strong interest to policymakers in all countries. In contrast, the appraisal of mobility solutions strongly diverges, showing that technology deployment is far from being a simple “plug and play” solution. Considering these insights can facilitate the overall deployment of smart cities, not only in the surveyed countries but also in global manner.

Suggested Citation

  • Marc Ringel, 2021. "Smart City Design Differences: Insights from Decision-Makers in Germany and the Middle East/North-Africa Region," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:2143-:d:500811
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/4/2143/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/4/2143/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dameri, Renata Paola & Benevolo, Clara & Veglianti, Eleonora & Li, Yaya, 2019. "Understanding smart cities as a glocal strategy: A comparison between Italy and China," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 26-41.
    2. Jenni Viitanen & Richard Kingston, 2014. "Smart Cities and Green Growth: Outsourcing Democratic and Environmental Resilience to the Global Technology Sector," Environment and Planning A, , vol. 46(4), pages 803-819, April.
    3. Malene Freudendal-Pedersen & Sven Kesselring & Eriketti Servou, 2019. "What is Smart for the Future City? Mobilities and Automation," Sustainability, MDPI, vol. 11(1), pages 1-21, January.
    4. Blanchet, Thomas, 2015. "Struggle over energy transition in Berlin: How do grassroots initiatives affect local energy policy-making?," Energy Policy, Elsevier, vol. 78(C), pages 246-254.
    5. Anastasia Stratigea & Chrysaida-Aliki Papadopoulou & Maria Panagiotopoulou, 2015. "Tools and Technologies for Planning the Development of Smart Cities," Journal of Urban Technology, Taylor & Francis Journals, vol. 22(2), pages 43-62, April.
    6. Griffiths, Steven, 2017. "A review and assessment of energy policy in the Middle East and North Africa region," Energy Policy, Elsevier, vol. 102(C), pages 249-269.
    7. Alotaibi, Sorour, 2011. "Energy consumption in Kuwait: Prospects and future approaches," Energy Policy, Elsevier, vol. 39(2), pages 637-643, February.
    8. Leonidas G. Anthopoulos, 2017. "Understanding Smart Cities: A Tool for Smart Government or an Industrial Trick?," Public Administration and Information Technology, Springer, number 978-3-319-57015-0, March.
    9. Nilssen, Maja, 2019. "To the smart city and beyond? Developing a typology of smart urban innovation," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 98-104.
    10. Walravens, Nils, 2015. "Qualitative indicators for smart city business models: The case of mobile services and applications," Telecommunications Policy, Elsevier, vol. 39(3), pages 218-240.
    11. Soud K. Al-Thani & Cynthia P. Skelhorn & Alexandre Amato & Muammer Koc & Sami G. Al-Ghamdi, 2018. "Smart Technology Impact on Neighborhood Form for a Sustainable Doha," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
    12. Margarita Angelidou, 2017. "The Role of Smart City Characteristics in the Plans of Fifteen Cities," Journal of Urban Technology, Taylor & Francis Journals, vol. 24(4), pages 3-28, October.
    13. Lee, Susan E. & Braithwaite, Peter & Leach, Joanne M. & Rogers, Chris D.F., 2016. "A comparison of energy systems in Birmingham, UK, with Masdar City, an embryonic city in Abu Dhabi Emirate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1299-1309.
    14. Letnik, Tomislav & Marksel, Maršenka & Luppino, Giuseppe & Bardi, Andrea & Božičnik, Stane, 2018. "Review of policies and measures for sustainable and energy efficient urban transport," Energy, Elsevier, vol. 163(C), pages 245-257.
    15. David Wachsmuth & Hillary Angelo, 2018. "Green and Gray: New Ideologies of Nature in Urban Sustainability Policy," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 108(4), pages 1038-1056, July.
    16. José A. LugoSantiago, 2020. "Leadership and Strategic Foresight in Smart Cities," Springer Books, Springer, number 978-3-030-49020-1, September.
    17. Marc Ringel & Roufaida Laidi & Djamel Djenouri, 2019. "Multiple Benefits through Smart Home Energy Management Solutions—A Simulation-Based Case Study of a Single-Family-House in Algeria and Germany," Energies, MDPI, vol. 12(8), pages 1-21, April.
    18. Reiche, Danyel, 2010. "Renewable Energy Policies in the Gulf countries: A case study of the carbon-neutral "Masdar City" in Abu Dhabi," Energy Policy, Elsevier, vol. 38(1), pages 378-382, January.
    19. Sally P. Caird & Stephen H. Hallett, 2019. "Towards evaluation design for smart city development," Journal of Urban Design, Taylor & Francis Journals, vol. 24(2), pages 188-209, March.
    20. Salahuddin, Mohammad & Alam, Khorshed & Ozturk, Ilhan & Sohag, Kazi, 2018. "The effects of electricity consumption, economic growth, financial development and foreign direct investment on CO2 emissions in Kuwait," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2002-2010.
    21. Ringel, Marc & Laidi, R & Djenouri, D, 2019. "Multiple Benefits through Smart Home Energy Management Solutions—A Simulation-Based Case Study of a Single-Family-House in Algeria and Germany," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 118851, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    22. Gelan, Ayele U., 2018. "Kuwait's energy subsidy reduction: Examining economic and CO2 emission effects with or without compensation," Energy Economics, Elsevier, vol. 71(C), pages 186-200.
    23. Marc Ringel & Roufaida Laidi & Djamel Djenouri, 2019. "Multiple Benefits through Smart Home Energy Management Solutions -- A Simulation-Based Case Study of a Single-Family House in Algeria and Germany," Papers 1904.11496, arXiv.org.
    24. Asif, M., 2016. "Growth and sustainability trends in the buildings sector in the GCC region with particular reference to the KSA and UAE," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1267-1273.
    25. Annalisa Cocchia, 2014. "Smart and Digital City: A Systematic Literature Review," Progress in IS, in: Renata Paola Dameri & Camille Rosenthal-Sabroux (ed.), Smart City, edition 127, pages 13-43, Springer.
    26. Leonidas G. Anthopoulos, 2015. "Understanding the Smart City Domain: A Literature Review," Public Administration and Information Technology, in: Manuel Pedro Rodríguez-Bolívar (ed.), Transforming City Governments for Successful Smart Cities, edition 127, pages 9-21, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seung-Chul Kim & Paul Hong & Taewon Lee & Ayeon Lee & So-Hyun Park, 2022. "Determining Strategic Priorities for Smart City Development: Case Studies of South Korean and International Smart Cities," Sustainability, MDPI, vol. 14(16), pages 1-13, August.
    2. Moe Soheilian & Géza Fischl & Myriam Aries, 2021. "Smart Lighting Application for Energy Saving and User Well-Being in the Residential Environment," Sustainability, MDPI, vol. 13(11), pages 1-17, May.
    3. Michael Cary, 2020. "Have greenhouse gas emissions from US energy production peaked? State level evidence from six subsectors," Environment Systems and Decisions, Springer, vol. 40(1), pages 125-134, March.
    4. Jörg Becker & Friedrich Chasin & Michael Rosemann & Daniel Beverungen & Jennifer Priefer & Jan vom Brocke & Martin Matzner & Adela del Rio Ortega & Manuel Resinas & Flavia Santoro & Minseok Song & Kan, 2023. "City 5.0: Citizen involvement in the design of future cities," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-21, December.
    5. Daniel J. Mallinson & Saahir Shafi, 2022. "Smart home technology: Challenges and opportunities for collaborative governance and policy research," Review of Policy Research, Policy Studies Organization, vol. 39(3), pages 330-352, May.
    6. Fathia Chekired & Oussama Taabli & Zakaria Mehdi Khellili & Amar Tilmatine & Aníbal T. de Almeida & Laurent Canale, 2022. "Near-Zero-Energy Building Management Based on Arduino Microcontroller—On-Site Lighting Management Application," Energies, MDPI, vol. 15(23), pages 1-20, November.
    7. WeiYu Ji & Edwin H. W. Chan, 2019. "Critical Factors Influencing the Adoption of Smart Home Energy Technology in China: A Guangdong Province Case Study," Energies, MDPI, vol. 12(21), pages 1-24, November.
    8. Nammi Kim & Seungwoo Yang, 2021. "Characteristics of Conceptually Related Smart Cities (CRSCs) Services from the Perspective of Sustainability," Sustainability, MDPI, vol. 13(6), pages 1-48, March.
    9. Fromhold-Eisebith, Martina & Eisebith, Günter, 2019. "What can Smart City policies in emerging economies actually achieve? Conceptual considerations and empirical insights from India," World Development, Elsevier, vol. 123(C), pages 1-1.
    10. Mora, Luca & Gerli, Paolo & Ardito, Lorenzo & Messeni Petruzzelli, Antonio, 2023. "Smart city governance from an innovation management perspective: Theoretical framing, review of current practices, and future research agenda," Technovation, Elsevier, vol. 123(C).
    11. Methee Srikranjanapert & Siripha Junlakarn & Naebboon Hoonchareon, 2021. "How an Integration of Home Energy Management and Battery System Affects the Economic Benefits of Residential PV System Owners in Thailand," Sustainability, MDPI, vol. 13(5), pages 1-20, March.
    12. Adriano Tanda & Alberto De Marco, 2021. "A Review of an Urban Living Lab Initiative," Review of Policy Research, Policy Studies Organization, vol. 38(3), pages 370-390, May.
    13. Ebru Tekin Bilbil, 2017. "The Operationalizing Aspects of Smart Cities: the Case of Turkey’s Smart Strategies," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 8(3), pages 1032-1048, September.
    14. Ahmad Adeel & Bruno Notteboom & Ansar Yasar & Kris Scheerlinck & Jeroen Stevens, 2021. "Insights into the Impacts of Mega Transport Infrastructures on the Transformation of Urban Fabric: Case of BRT Lahore," Sustainability, MDPI, vol. 13(13), pages 1-32, July.
    15. Federico Delfino & Paola Laiolo & Federico Delfino, 2019. "Living Labs and Partnerships for Progress-How Universities can Drive the Process towards the Sustainable City," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 18(2), pages 71-73, April.
    16. Johannes Stübinger & Lucas Schneider, 2020. "Understanding Smart City—A Data-Driven Literature Review," Sustainability, MDPI, vol. 12(20), pages 1-23, October.
    17. Lill Sarv & Ralf-Martin Soe, 2021. "Transition towards Smart City: The Case of Tallinn," Sustainability, MDPI, vol. 13(8), pages 1-18, April.
    18. Alper Ozpinar, 2023. "A Hyper-Integrated Mobility as a Service (MaaS) to Gamification and Carbon Market Enterprise Architecture Framework for Sustainable Environment," Energies, MDPI, vol. 16(5), pages 1-22, March.
    19. Łukasz Brzeziński & Magdalena Krystyna Wyrwicka, 2022. "Fundamental Directions of the Development of the Smart Cities Concept and Solutions in Poland," Energies, MDPI, vol. 15(21), pages 1-52, November.
    20. Renata Biadacz & Marek Biadacz, 2021. "Implementation of “Smart” Solutions and An Attempt to Measure Them: A Case Study of Czestochowa, Poland," Energies, MDPI, vol. 14(18), pages 1-28, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:2143-:d:500811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.