IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i15p3000-d254557.html
   My bibliography  Save this article

Design of Magnetic Coupler for Wireless Power Transfer

Author

Listed:
  • Heqi Xu

    (College of Electrical Engineering, Qingdao University, Qingdao 266071, China)

  • Chunfang Wang

    (College of Electrical Engineering, Qingdao University, Qingdao 266071, China)

  • Dongwei Xia

    (College of Electrical Engineering, Qingdao University, Qingdao 266071, China)

  • Yunrui Liu

    (College of Electrical Engineering, Qingdao University, Qingdao 266071, China)

Abstract

In order to improve the restraint ability of electromagnetic energy in space and improve the coupling efficiency, a magnetic coupler structure with composite magnetic shield is proposed. Firstly, the model is established by using the finite-element simulation software. Then, according to the limit of public exposure to time-varying electromagnetic fields pointed out in ICNIPR (International Commission on Non-Ionizing Radiation Protection) guidelines, the characteristics and spatial magnetic field distribution of magnetic couplers with a single shielding structure, double shielding structure, and composite shielding structure are compared and analyzed. Finally, the experimental results show that the structure of magnetic couplers with a composite magnetic shield has a good effect in strengthening magnetic field concentration and reducing the electromagnetic interference of wireless charging systems to the external environment. It also has the advantages of smaller volume, lighter weight, and lower cost, and can effectively improve the transmission efficiency and enhance the stability of wireless charging systems.

Suggested Citation

  • Heqi Xu & Chunfang Wang & Dongwei Xia & Yunrui Liu, 2019. "Design of Magnetic Coupler for Wireless Power Transfer," Energies, MDPI, vol. 12(15), pages 1-12, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:3000-:d:254557
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/15/3000/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/15/3000/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Feng Wen & Xueliang Huang, 2016. "Optimal Magnetic Field Shielding Method by Metallic Sheets in Wireless Power Transfer System," Energies, MDPI, vol. 9(9), pages 1-15, September.
    2. Kamal Eldin Idris Elnail & Xueliang Huang & Chen Xiao & Linlin Tan & Xu Haozhe, 2018. "Core Structure and Electromagnetic Field Evaluation in WPT Systems for Charging Electric Vehicles," Energies, MDPI, vol. 11(7), pages 1-17, July.
    3. Linlin Tan & Jiacheng Li & Chen Chen & Changxin Yan & Jinpeng Guo & Xueliang Huang, 2016. "Analysis and Performance Improvement of WPT Systems in the Environment of Single Non-Ferromagnetic Metal Plates," Energies, MDPI, vol. 9(8), pages 1-16, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gautham Ram Chandra Mouli & Peter Van Duijsen & Francesca Grazian & Ajay Jamodkar & Pavol Bauer & Olindo Isabella, 2020. "Sustainable E-Bike Charging Station That Enables AC, DC and Wireless Charging from Solar Energy," Energies, MDPI, vol. 13(14), pages 1-21, July.
    2. Nadir Benalia & Kouider Laroussi & Idriss Benlaloui & Abdellah Kouzou & Abed-Djebar Bensalah & Ralph Kennel & Mohamed Abdelrahem, 2023. "Optimized Power Pads for Charging Electric Vehicles Based on a New Rectangular Spiral Shape Design," Sustainability, MDPI, vol. 15(2), pages 1-14, January.
    3. Hyeon-Seok Lee & Jae-Jung Yun, 2020. "Three-Port Converter for Integrating Energy Storage and Wireless Power Transfer Systems in Future Residential Applications," Energies, MDPI, vol. 13(1), pages 1-16, January.
    4. Mohamed, Ahmed A.S. & Shaier, Ahmed A. & Metwally, Hamid & Selem, Sameh I., 2020. "A comprehensive overview of inductive pad in electric vehicles stationary charging," Applied Energy, Elsevier, vol. 262(C).
    5. Konstantina Dimitriadou & Nick Rigogiannis & Symeon Fountoukidis & Faidra Kotarela & Anastasios Kyritsis & Nick Papanikolaou, 2023. "Current Trends in Electric Vehicle Charging Infrastructure; Opportunities and Challenges in Wireless Charging Integration," Energies, MDPI, vol. 16(4), pages 1-28, February.
    6. Libin Yang & Ming Zong & Chunlai Li, 2021. "Voltage-Gain Design and Efficiency Optimization of Series/Series-Parallel Inductive Power Transfer System Considering Misalignment Issue," Energies, MDPI, vol. 14(11), pages 1-11, May.
    7. Geetha Palani & Usha Sengamalai & Pradeep Vishnuram & Benedetto Nastasi, 2023. "Challenges and Barriers of Wireless Charging Technologies for Electric Vehicles," Energies, MDPI, vol. 16(5), pages 1-47, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joao Victor Pinon Pereira Dias & Masafumi Miyatake, 2018. "Increase in Robustness against Effects of Coil Misalignment on Electrical Parameters Using Magnetic Material Layer in Planar Coils of Wireless Power Transfer Transformer," Energies, MDPI, vol. 11(8), pages 1-25, July.
    2. Yushan Wang & Baowei Song & Zhaoyong Mao, 2020. "Analysis and Experiment for Wireless Power Transfer Systems with Two Kinds Shielding Coils in EVs," Energies, MDPI, vol. 13(1), pages 1-18, January.
    3. Mohamed, Ahmed A.S. & Shaier, Ahmed A. & Metwally, Hamid & Selem, Sameh I., 2020. "A comprehensive overview of inductive pad in electric vehicles stationary charging," Applied Energy, Elsevier, vol. 262(C).
    4. Jianfeng Hong & Mingjie Guan & Zaifa Lin & Qiu Fang & Wei Wu & Wenxiang Chen, 2019. "Series-Series/Series Compensated Inductive Power Transmission System with Symmetrical Half-Bridge Resonant Converter: Design, Analysis, and Experimental Assessment," Energies, MDPI, vol. 12(12), pages 1-17, June.
    5. Matjaz Rozman & Michael Fernando & Bamidele Adebisi & Khaled M. Rabie & Tim Collins & Rupak Kharel & Augustine Ikpehai, 2017. "A New Technique for Reducing Size of a WPT System Using Two-Loop Strongly-Resonant Inductors," Energies, MDPI, vol. 10(10), pages 1-18, October.
    6. Pradeep Vishnuram & Suresh Panchanathan & Narayanamoorthi Rajamanickam & Vijayakumar Krishnasamy & Mohit Bajaj & Marian Piecha & Vojtech Blazek & Lukas Prokop, 2023. "Review of Wireless Charging System: Magnetic Materials, Coil Configurations, Challenges, and Future Perspectives," Energies, MDPI, vol. 16(10), pages 1-31, May.
    7. Yan, Xiao-Yu & Yang, Shi-Chun & He, Hong & Tang, Tie-Qiao, 2018. "An optimization model for wireless power transfer system based on circuit simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 873-880.
    8. Kafeel Ahmed Kalwar & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan, 2016. "Coil Design for High Misalignment Tolerant Inductive Power Transfer System for EV Charging," Energies, MDPI, vol. 9(11), pages 1-13, November.
    9. Ravikiran Vaka & Ritesh Kumar Keshri, 2017. "Review on Contactless Power Transfer for Electric Vehicle Charging," Energies, MDPI, vol. 10(5), pages 1-20, May.
    10. Linlin Tan & Kamal Eldin Idris Elnail & Minghao Ju & Xueliang Huang, 2019. "Comparative Analysis and Design of the Shielding Techniques in WPT Systems for Charging EVs," Energies, MDPI, vol. 12(11), pages 1-20, June.
    11. Marojahan Tampubolon & Laskar Pamungkas & Huang-Jen Chiu & Yu-Chen Liu & Yao-Ching Hsieh, 2018. "Dynamic Wireless Power Transfer for Logistic Robots," Energies, MDPI, vol. 11(3), pages 1-13, February.
    12. Lantao Huang & Jiahao Zou & Yihan Zhou & Yan Hong & Jing Zhang & Zinan Ding, 2019. "Effect of Vertical Metal Plate on Transfer Efficiency of the Wireless Power Transfer System," Energies, MDPI, vol. 12(19), pages 1-15, October.
    13. Jianwei Kang & Jie Lu & Deyu Zeng & Xiangyang Shi, 2022. "Analysis and Visualization of the Instantaneous Spatial Energy Density and Poynting Vector of the Wireless Power Transfer System," Energies, MDPI, vol. 15(16), pages 1-18, August.
    14. Matjaz Rozman & Michael Fernando & Bamidele Adebisi & Khaled M. Rabie & Rupak Kharel & Augustine Ikpehai & Haris Gacanin, 2017. "Combined Conformal Strongly-Coupled Magnetic Resonance for Efficient Wireless Power Transfer," Energies, MDPI, vol. 10(4), pages 1-18, April.
    15. Young Jin Hwang & Jae Young Jang, 2020. "Design and Analysis of a Novel Magnetic Coupler of an In-Wheel Wireless Power Transfer System for Electric Vehicles," Energies, MDPI, vol. 13(2), pages 1-22, January.
    16. Aqeel Mahmood Jawad & Rosdiadee Nordin & Sadik Kamel Gharghan & Haider Mahmood Jawad & Mahamod Ismail & Mahmood Jawad Abu-AlShaeer, 2018. "Single-Tube and Multi-Turn Coil Near-Field Wireless Power Transfer for Low-Power Home Appliances," Energies, MDPI, vol. 11(8), pages 1-19, July.
    17. Xian Zhang & Xuejing Ni & Bin Wei & Songcen Wang & Qingxin Yang, 2018. "Characteristic Analysis of Electromagnetic Force in a High-Power Wireless Power Transfer System," Energies, MDPI, vol. 11(11), pages 1-13, November.
    18. Feng Wen & Xueliang Huang, 2017. "Human Exposure to Electromagnetic Fields from Parallel Wireless Power Transfer Systems," IJERPH, MDPI, vol. 14(2), pages 1-15, February.
    19. Xian Zhang & Yanan Ren & Lin Sha & Qingxin Yang & Xuejing Ni & Fengxian Wang, 2020. "Analysis of Dynamic Characteristics of Foreign Metal Objects under Electromagnetic Force in High-Power Wireless Power Transfer," Energies, MDPI, vol. 13(15), pages 1-15, July.
    20. Wenxun Xiao & Ruigeng Shen & Bo Zhang & Dongyuan Qiu & Yanfeng Chen & Tian Li, 2018. "Effects of Foreign Metal Object on Soft-Switching Conditions of Class-E Inverter in WPT," Energies, MDPI, vol. 11(8), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:3000-:d:254557. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.