IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i15p3881-d391787.html
   My bibliography  Save this article

Analysis of Dynamic Characteristics of Foreign Metal Objects under Electromagnetic Force in High-Power Wireless Power Transfer

Author

Listed:
  • Xian Zhang

    (Tianjin Key Laboratory of Advanced Electrical Engineering and Energy Technology, TianGong University, Tianjin 300387, China)

  • Yanan Ren

    (Tianjin Key Laboratory of Advanced Electrical Engineering and Energy Technology, TianGong University, Tianjin 300387, China)

  • Lin Sha

    (Tianjin Key Laboratory of Advanced Electrical Engineering and Energy Technology, TianGong University, Tianjin 300387, China)

  • Qingxin Yang

    (Tianjin Key Laboratory of Advanced Electrical Engineering and Energy Technology, TianGong University, Tianjin 300387, China)

  • Xuejing Ni

    (Tianjin Key Laboratory of Advanced Electrical Engineering and Energy Technology, TianGong University, Tianjin 300387, China)

  • Fengxian Wang

    (Tianjin Key Laboratory of Advanced Electrical Engineering and Energy Technology, TianGong University, Tianjin 300387, China)

Abstract

Because of the noncontact structure of wireless power transfer (WPT) systems, foreign metal objects can easily enter into the coupling region—and often move under the action of electromagnetic force (EMF), instead of staying relatively static, which brings a difficult problem for foreign object detection technology. In this paper, we investigate the motion state of foreign metal objects with different properties under the action of electromagnetic force in the coupling space of WPT system. The equivalent model of the circuit parameters with the intervention of foreign metal objects and the differential equations for the motion of foreign metal objects are derived. Combined with finite-element simulation calculations, the motion characteristic of ferromagnetic and non-ferromagnetic metals under EMF was analyzed. The results show that, due to the size and properties of the metal, non-ferromagnetic foreign metal objects have four states: vibration, suspension, static and flying out. The ferromagnetic foreign metal objects will adsorb on the coil surface and rapidly heat up. By establishing an experimental prototype, the analysis uses high-speed acquisition equipment to obtain the movement of foreign metal objects which verified the correctness of the simulation. This research is also beneficial to the operational safety and reliability of the WPT.

Suggested Citation

  • Xian Zhang & Yanan Ren & Lin Sha & Qingxin Yang & Xuejing Ni & Fengxian Wang, 2020. "Analysis of Dynamic Characteristics of Foreign Metal Objects under Electromagnetic Force in High-Power Wireless Power Transfer," Energies, MDPI, vol. 13(15), pages 1-15, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3881-:d:391787
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/15/3881/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/15/3881/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bo Cheng & Jianghua Lu & Yiming Zhang & Guang Pan & Rakan Chabaan & Chunting Chris Mi, 2020. "A Metal Object Detection System with Multilayer Detection Coil Layouts for Electric Vehicle Wireless Charging," Energies, MDPI, vol. 13(11), pages 1-16, June.
    2. Yan Lu & Dongsheng Brian Ma, 2016. "Wireless Power Transfer System Architectures for Portable or Implantable Applications," Energies, MDPI, vol. 9(12), pages 1-16, December.
    3. Linlin Tan & Jiacheng Li & Chen Chen & Changxin Yan & Jinpeng Guo & Xueliang Huang, 2016. "Analysis and Performance Improvement of WPT Systems in the Environment of Single Non-Ferromagnetic Metal Plates," Energies, MDPI, vol. 9(8), pages 1-16, July.
    4. Yang Liu & Bin Li & Mo Huang & Zhijian Chen & Xiuyin Zhang, 2018. "An Overview of Regulation Topologies in Resonant Wireless Power Transfer Systems for Consumer Electronics or Bio-Implants," Energies, MDPI, vol. 11(7), pages 1-22, July.
    5. Xian Zhang & Xuejing Ni & Bin Wei & Songcen Wang & Qingxin Yang, 2018. "Characteristic Analysis of Electromagnetic Force in a High-Power Wireless Power Transfer System," Energies, MDPI, vol. 11(11), pages 1-13, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Narayanamoorthi R. & Vimala Juliet A. & Bharatiraja Chokkalingam & Sanjeevikumar Padmanaban & Zbigniew M. Leonowicz, 2017. "Class E Power Amplifier Design and Optimization for the Capacitive Coupled Wireless Power Transfer System in Biomedical Implants," Energies, MDPI, vol. 10(9), pages 1-20, September.
    2. Md Maruf Hossain Shuvo & Twisha Titirsha & Nazmul Amin & Syed Kamrul Islam, 2022. "Energy Harvesting in Implantable and Wearable Medical Devices for Enduring Precision Healthcare," Energies, MDPI, vol. 15(20), pages 1-50, October.
    3. Matjaz Rozman & Michael Fernando & Bamidele Adebisi & Khaled M. Rabie & Tim Collins & Rupak Kharel & Augustine Ikpehai, 2017. "A New Technique for Reducing Size of a WPT System Using Two-Loop Strongly-Resonant Inductors," Energies, MDPI, vol. 10(10), pages 1-18, October.
    4. Joao Victor Pinon Pereira Dias & Masafumi Miyatake, 2018. "Increase in Robustness against Effects of Coil Misalignment on Electrical Parameters Using Magnetic Material Layer in Planar Coils of Wireless Power Transfer Transformer," Energies, MDPI, vol. 11(8), pages 1-25, July.
    5. Zhen Zhang & Ruilin Tong & Zhenyan Liang & Chunhua Liu & Jiang Wang, 2018. "Analysis and Control of Optimal Power Distribution for Multi-Objective Wireless Charging Systems," Energies, MDPI, vol. 11(7), pages 1-16, July.
    6. Pradeep Vishnuram & Suresh Panchanathan & Narayanamoorthi Rajamanickam & Vijayakumar Krishnasamy & Mohit Bajaj & Marian Piecha & Vojtech Blazek & Lukas Prokop, 2023. "Review of Wireless Charging System: Magnetic Materials, Coil Configurations, Challenges, and Future Perspectives," Energies, MDPI, vol. 16(10), pages 1-31, May.
    7. Yan, Xiao-Yu & Yang, Shi-Chun & He, Hong & Tang, Tie-Qiao, 2018. "An optimization model for wireless power transfer system based on circuit simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 873-880.
    8. Xin Liu & Tianfeng Wang & Xijun Yang & Nan Jin & Houjun Tang, 2017. "Analysis and Design of a Wireless Power Transfer System with Dual Active Bridges," Energies, MDPI, vol. 10(10), pages 1-20, October.
    9. Xin Liu & Tianfeng Wang & Nan Jin & Salman Habib & Muhammad Ali & Xijun Yang & Houjun Tang, 2018. "Analysis and Elimination of Dead-Time Effect in Wireless Power Transfer System," Energies, MDPI, vol. 11(6), pages 1-15, June.
    10. Joungha Lee & Seung Beop Lee, 2021. "Transmitter Module Optimization for Wireless Power Transfer Systems with Single Transmitter to Multiple Receivers," Mathematics, MDPI, vol. 9(22), pages 1-16, November.
    11. Li Zhai & Yu Cao & Liwen Lin & Tao Zhang & Steven Kavuma, 2018. "Mitigation Conducted Emission Strategy Based on Transfer Function from a DC-Fed Wireless Charging System for Electric Vehicles," Energies, MDPI, vol. 11(3), pages 1-17, February.
    12. Ravikiran Vaka & Ritesh Kumar Keshri, 2017. "Review on Contactless Power Transfer for Electric Vehicle Charging," Energies, MDPI, vol. 10(5), pages 1-20, May.
    13. Win-Jet Luo & C. Bambang Dwi Kuncoro & Yean-Der Kuan, 2020. "Wireless Power Hanger Pad for Portable Wireless Audio Device Power Charger Application," Energies, MDPI, vol. 13(2), pages 1-18, January.
    14. Marojahan Tampubolon & Laskar Pamungkas & Huang-Jen Chiu & Yu-Chen Liu & Yao-Ching Hsieh, 2018. "Dynamic Wireless Power Transfer for Logistic Robots," Energies, MDPI, vol. 11(3), pages 1-13, February.
    15. Ying Sun & Tian Zhou & Jinhai Jiang & Guo Wei & Chunbo Zhu & Kai Song, 2023. "High-Sensitivity Detection Method for Metal Foreign Objects Based on Frequency Optimization in Wireless Electric Vehicles Charging," Energies, MDPI, vol. 16(2), pages 1-20, January.
    16. Vincenzo Cirimele & Fabio Freschi & Paolo Guglielmi, 2018. "Scaling Rules at Constant Frequency for Resonant Inductive Power Transfer Systems for Electric Vehicles," Energies, MDPI, vol. 11(7), pages 1-17, July.
    17. Lin Chen & Jianfeng Hong & Zaifa Lin & Daqing Luo & Mingjie Guan & Wenxiang Chen, 2020. "A Converter with Automatic Stage Transition Control for Inductive Power Transfer," Energies, MDPI, vol. 13(20), pages 1, October.
    18. Kamal Eldin Idris Elnail & Xueliang Huang & Chen Xiao & Linlin Tan & Xu Haozhe, 2018. "Core Structure and Electromagnetic Field Evaluation in WPT Systems for Charging Electric Vehicles," Energies, MDPI, vol. 11(7), pages 1-17, July.
    19. Fabio Corti & Alberto Reatti & Ya-Hui Wu & Dariusz Czarkowski & Salvatore Musumeci, 2021. "Zero Voltage Switching Condition in Class-E Inverter for Capacitive Wireless Power Transfer Applications," Energies, MDPI, vol. 14(4), pages 1-20, February.
    20. Xian Zhang & Xuejing Ni & Bin Wei & Songcen Wang & Qingxin Yang, 2018. "Characteristic Analysis of Electromagnetic Force in a High-Power Wireless Power Transfer System," Energies, MDPI, vol. 11(11), pages 1-13, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3881-:d:391787. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.