IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i2p332-d306981.html
   My bibliography  Save this article

Design and Analysis of a Novel Magnetic Coupler of an In-Wheel Wireless Power Transfer System for Electric Vehicles

Author

Listed:
  • Young Jin Hwang

    (Center for Scientific Instrumentation, Korea Basic Science Institute, Daejeon 34133, Korea)

  • Jae Young Jang

    (Center for Scientific Instrumentation, Korea Basic Science Institute, Daejeon 34133, Korea)

Abstract

Electric vehicle (EVs), which use an electric motor, are expected to replace internal combustion engine vehicles. However, to date EVs are not highly attractive to consumers due to their unsatisfactory battery charging characteristics and high cost. In particular, the existing conductive charging method makes it more difficult to spread EVs due to the inconvenience of charging and the risk of electric shock. The wireless power transfer (WPT) system can eliminate all of the charging troubles of EVs. However, the WPT systems in existing EVs have large air gaps between the transmitter coil and the receiver coil, posing a hurdle that prevents success. The large air gap cause issues such as a loose coupling, low efficiency, and troublesome electromagnetic compatibility (EMC). An in-wheel WPT system can serve as a solution to address the issues arising due to the large air gap. In this paper, we propose a magnetic coupler structure of an in-wheel WPT system for EV applications. A design of two coils is introduced, in which the transmitter coil and receiver coil are designed based on a design method. Moreover, the pad structure according to the ferromagnetic core geometry is designed and discussed. The aim of this research is to find a suitable configuration of the magnetic coupler for an in-wheel WPT system. The values of the coupling coefficients according the magnetic coupler structure are determined. This paper is expected to provide a good reference for further research, including work on the manufacturing of a prototype.

Suggested Citation

  • Young Jin Hwang & Jae Young Jang, 2020. "Design and Analysis of a Novel Magnetic Coupler of an In-Wheel Wireless Power Transfer System for Electric Vehicles," Energies, MDPI, vol. 13(2), pages 1-22, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:332-:d:306981
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/2/332/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/2/332/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Linlin Tan & Jinpeng Guo & Xueliang Huang & Han Liu & Changxin Yan & Wei Wang, 2016. "Power Control Strategies of On-Road Charging for Electric Vehicles," Energies, MDPI, vol. 9(7), pages 1-14, July.
    2. Venugopal, Prasanth & Shekhar, Aditya & Visser, Erwin & Scheele, Natalia & Chandra Mouli, Gautham Ram & Bauer, Pavol & Silvester, Sacha, 2018. "Roadway to self-healing highways with integrated wireless electric vehicle charging and sustainable energy harvesting technologies," Applied Energy, Elsevier, vol. 212(C), pages 1226-1239.
    3. Kamal Eldin Idris Elnail & Xueliang Huang & Chen Xiao & Linlin Tan & Xu Haozhe, 2018. "Core Structure and Electromagnetic Field Evaluation in WPT Systems for Charging Electric Vehicles," Energies, MDPI, vol. 11(7), pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. João F. P. Fernandes & Pedro P. C. Bhagubai & Paulo J. C. Branco, 2022. "Recent Developments in Electrical Machine Design for the Electrification of Industrial and Transportation Systems," Energies, MDPI, vol. 15(17), pages 1-13, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Konstantina Anastasiadou & Nikolaos Gavanas & Magda Pitsiava-Latinopoulou & Evangelos Bekiaris, 2021. "Infrastructure Planning for Autonomous Electric Vehicles, Integrating Safety and Sustainability Aspects: A Multi-Criteria Analysis Approach," Energies, MDPI, vol. 14(17), pages 1-19, August.
    2. Soares, Laura & Wang, Hao, 2022. "A study on renewed perspectives of electrified road for wireless power transfer of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. Tan, Ting & Yan, Zhimiao & Zou, Hongxiang & Ma, Kejing & Liu, Fengrui & Zhao, Linchuan & Peng, Zhike & Zhang, Wenming, 2019. "Renewable energy harvesting and absorbing via multi-scale metamaterial systems for Internet of things," Applied Energy, Elsevier, vol. 254(C).
    4. Jianfeng Hong & Mingjie Guan & Zaifa Lin & Qiu Fang & Wei Wu & Wenxiang Chen, 2019. "Series-Series/Series Compensated Inductive Power Transmission System with Symmetrical Half-Bridge Resonant Converter: Design, Analysis, and Experimental Assessment," Energies, MDPI, vol. 12(12), pages 1-17, June.
    5. Hasan Huseyin Coban & Aysha Rehman & Abdullah Mohamed, 2022. "Analyzing the Societal Cost of Electric Roads Compared to Batteries and Oil for All Forms of Road Transport," Energies, MDPI, vol. 15(5), pages 1-20, March.
    6. Yiqing Dai & Yan Yin & Yundi Lu, 2021. "Strategies to Facilitate Photovoltaic Applications in Road Structures for Energy Harvesting," Energies, MDPI, vol. 14(21), pages 1-14, October.
    7. Nithesh Naik & P. Suresh & Sanjay Yadav & M. P. Nisha & José Luis Arias-Gonzáles & Juan Carlos Cotrina-Aliaga & Ritesh Bhat & Manohara D. Jalageri & Yashaarth Kaushik & Aakif Budnar Kunjibettu, 2023. "A Review on Composite Materials for Energy Harvesting in Electric Vehicles," Energies, MDPI, vol. 16(8), pages 1-19, April.
    8. Tan, Zhen & Liu, Fan & Chan, Hing Kai & Gao, H. Oliver, 2022. "Transportation systems management considering dynamic wireless charging electric vehicles: Review and prospects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    9. Linlin Tan & Kamal Eldin Idris Elnail & Minghao Ju & Xueliang Huang, 2019. "Comparative Analysis and Design of the Shielding Techniques in WPT Systems for Charging EVs," Energies, MDPI, vol. 12(11), pages 1-20, June.
    10. Shi, Jie & Gao, H. Oliver, 2022. "Efficient energy management of wireless charging roads with energy storage for coupled transportation–power systems," Applied Energy, Elsevier, vol. 323(C).
    11. Liu, Kai & Fu, Chaoliang & Wang, Hao & Wang, Fang & Xu, Peixin & Kan, Chaohao, 2020. "Exploring the energy-saving potential of electromagnetic induction pavement via magnetic concentrating technique," Energy, Elsevier, vol. 211(C).
    12. Kamal Eldin Idris Elnail & Xueliang Huang & Chen Xiao & Linlin Tan & Xu Haozhe, 2018. "Core Structure and Electromagnetic Field Evaluation in WPT Systems for Charging Electric Vehicles," Energies, MDPI, vol. 11(7), pages 1-17, July.
    13. Zhang, Jian & Tang, Tie-Qiao & Yan, Yadan & Qu, Xiaobo, 2021. "Eco-driving control for connected and automated electric vehicles at signalized intersections with wireless charging," Applied Energy, Elsevier, vol. 282(PA).
    14. Linlin Tan & Ming Zhang & Songcen Wang & Shulei Pan & Zhenxing Zhang & Jiacheng Li & Xueliang Huang, 2019. "The Design and Optimization of a Wireless Power Transfer System Allowing Random Access for Multiple Loads," Energies, MDPI, vol. 12(6), pages 1-19, March.
    15. Yu, Chengbin & Park, Juhyuk & Ryoun Youn, Jae & Seok Song, Young, 2022. "Integration of form-stable phase change material into pyroelectric energy harvesting system," Applied Energy, Elsevier, vol. 307(C).
    16. Aqeel Mahmood Jawad & Rosdiadee Nordin & Sadik Kamel Gharghan & Haider Mahmood Jawad & Mahamod Ismail & Mahmood Jawad Abu-AlShaeer, 2018. "Single-Tube and Multi-Turn Coil Near-Field Wireless Power Transfer for Low-Power Home Appliances," Energies, MDPI, vol. 11(8), pages 1-19, July.
    17. Xian Zhang & Xuejing Ni & Bin Wei & Songcen Wang & Qingxin Yang, 2018. "Characteristic Analysis of Electromagnetic Force in a High-Power Wireless Power Transfer System," Energies, MDPI, vol. 11(11), pages 1-13, November.
    18. Jiang, Wei & Wang, Teng & Yuan, Dongdong & Sha, Aimin & Zhang, Shuo & Zhang, Yufei & Xiao, Jingjing & Xing, Chengwei, 2024. "Available solar resources and photovoltaic system planning strategy for highway," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    19. Chen, Xiao & Wang, Hao & Zheng, Zilong & Lu, Fei, 2025. "Electro-thermal analysis of inductively coupled power transfer in pavement for electric vehicle charging," Applied Energy, Elsevier, vol. 378(PA).
    20. Ilman Sulaeman & Gautham Ram Chandra Mouli & Aditya Shekhar & Pavol Bauer, 2021. "Comparison of AC and DC Nanogrid for Office Buildings with EV Charging, PV and Battery Storage," Energies, MDPI, vol. 14(18), pages 1-22, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:332-:d:306981. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.