IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i1p49-d86919.html
   My bibliography  Save this article

Wireless DC Motor Drives with Selectability and Controllability

Author

Listed:
  • Chaoqiang Jiang

    (Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China)

  • K.T. Chau

    (Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China)

  • Chunhua Liu

    (School of Energy and Environment, City University of Hong Kong, Hong Kong, China)

  • Wei Han

    (Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China)

Abstract

This paper proposes and implements the concept of wireless DC motor drives, which can achieve the abilities of selective driving and controllable speed. Due to different resonant frequencies of the multiple energy receivers of the associated DC motor drives, the transmitter can be purposely tuned to the specified resonant frequency which matches with the specified receiver, hence driving the specified motor selectively. In the meantime, the burst fire control is used to regulate the operating speed of the motor working at the resonant frequency, hence retaining the maximum power transmission efficiency. Both finite element analysis and experimentation are given to verify the validity of the proposed wireless DC motor drive system. For exemplification, three different resonant frequencies, namely 60 kHz, 100 kHz and 140 kHz, are selected to energize three DC motors. Under the burst fire control method, the speed of each motor can be regulated separately and the wireless power transfer (WPT) system can achieve the measured power transmission efficiency of about 60%.

Suggested Citation

  • Chaoqiang Jiang & K.T. Chau & Chunhua Liu & Wei Han, 2017. "Wireless DC Motor Drives with Selectability and Controllability," Energies, MDPI, vol. 10(1), pages 1-15, January.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:1:p:49-:d:86919
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/1/49/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/1/49/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Po Hu & Jieshuai Ren & Wenan Li, 2016. "Frequency-Splitting-Free Synchronous Tuning of Close-Coupling Self-Oscillating Wireless Power Transfer," Energies, MDPI, vol. 9(7), pages 1-16, June.
    2. Vijith Vijayakumaran Nair & Jun Rim Choi, 2015. "An Integrated Chip High-Voltage Power Receiver for Wireless Biomedical Implants," Energies, MDPI, vol. 8(6), pages 1-21, June.
    3. Aditya Shekhar & Venugopal Prasanth & Pavol Bauer & Mark Bolech, 2016. "Economic Viability Study of an On-Road Wireless Charging System with a Generic Driving Range Estimation Method," Energies, MDPI, vol. 9(2), pages 1-20, January.
    4. Linlin Tan & Jiacheng Li & Chen Chen & Changxin Yan & Jinpeng Guo & Xueliang Huang, 2016. "Analysis and Performance Improvement of WPT Systems in the Environment of Single Non-Ferromagnetic Metal Plates," Energies, MDPI, vol. 9(8), pages 1-16, July.
    5. Longzhao Sun & Houjun Tang & Yingyi Zhang, 2015. "Determining the Frequency for Load-Independent Output Current in Three-Coil Wireless Power Transfer System," Energies, MDPI, vol. 8(9), pages 1-12, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chaoqiang Jiang & K. T. Chau & Chunhua Liu & Christopher H. T. Lee, 2017. "An Overview of Resonant Circuits for Wireless Power Transfer," Energies, MDPI, vol. 10(7), pages 1-20, June.
    2. Wei Liu & K. T. Chau & W. H. Lam & Zhen Zhang, 2019. "Continuously Variable-Frequency Energy-Encrypted Wireless Power Transfer," Energies, MDPI, vol. 12(7), pages 1-18, April.
    3. Weikun Cai & Dianguang Ma & Xiaoyang Lai & Khurram Hashmi & Houjun Tang & Junzhong Xu, 2020. "Time-Sharing Control Strategy for Multiple-Receiver Wireless Power Transfer Systems," Energies, MDPI, vol. 13(3), pages 1-26, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karam Hwang & Jaeyong Cho & Dongwook Kim & Jaehyoung Park & Jong Hwa Kwon & Sang Il Kwak & Hyun Ho Park & Seungyoung Ahn, 2017. "An Autonomous Coil Alignment System for the Dynamic Wireless Charging of Electric Vehicles to Minimize Lateral Misalignment," Energies, MDPI, vol. 10(3), pages 1-20, March.
    2. Zhongyu Dai & Junhua Wang & Mengjiao Long & Hong Huang, 2017. "A Witricity-Based High-Power Device for Wireless Charging of Electric Vehicles," Energies, MDPI, vol. 10(3), pages 1-14, March.
    3. Joao Victor Pinon Pereira Dias & Masafumi Miyatake, 2018. "Increase in Robustness against Effects of Coil Misalignment on Electrical Parameters Using Magnetic Material Layer in Planar Coils of Wireless Power Transfer Transformer," Energies, MDPI, vol. 11(8), pages 1-25, July.
    4. Longzhao Sun & Houjun Tang & Yingyi Zhang, 2015. "Determining the Frequency for Load-Independent Output Current in Three-Coil Wireless Power Transfer System," Energies, MDPI, vol. 8(9), pages 1-12, September.
    5. Pradeep Vishnuram & Suresh Panchanathan & Narayanamoorthi Rajamanickam & Vijayakumar Krishnasamy & Mohit Bajaj & Marian Piecha & Vojtech Blazek & Lukas Prokop, 2023. "Review of Wireless Charging System: Magnetic Materials, Coil Configurations, Challenges, and Future Perspectives," Energies, MDPI, vol. 16(10), pages 1-31, May.
    6. Yan, Xiao-Yu & Yang, Shi-Chun & He, Hong & Tang, Tie-Qiao, 2018. "An optimization model for wireless power transfer system based on circuit simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 873-880.
    7. Xin Liu & Tianfeng Wang & Xijun Yang & Nan Jin & Houjun Tang, 2017. "Analysis and Design of a Wireless Power Transfer System with Dual Active Bridges," Energies, MDPI, vol. 10(10), pages 1-20, October.
    8. Prasanth Venugopal & Soumya Bandyopadhyay & Pavol Bauer & Jan Abraham Ferreira, 2017. "A Generic Matrix Method to Model the Magnetics of Multi-Coil Air-Cored Inductive Power Transfer Systems," Energies, MDPI, vol. 10(6), pages 1-17, June.
    9. Zhenshi Wang & Xuezhe Wei & Haifeng Dai, 2015. "Design and Control of a 3 kW Wireless Power Transfer System for Electric Vehicles," Energies, MDPI, vol. 9(1), pages 1-18, December.
    10. Li, Pengshun & Zhang, Yuhang & Zhang, Yi & Zhang, Yi & Zhang, Kai, 2021. "Prediction of electric bus energy consumption with stochastic speed profile generation modelling and data driven method based on real-world big data," Applied Energy, Elsevier, vol. 298(C).
    11. Ravikiran Vaka & Ritesh Kumar Keshri, 2017. "Review on Contactless Power Transfer for Electric Vehicle Charging," Energies, MDPI, vol. 10(5), pages 1-20, May.
    12. Qiu, K. & Ribberink, H. & Entchev, E., 2022. "Economic feasibility of electrified highways for heavy-duty electric trucks," Applied Energy, Elsevier, vol. 326(C).
    13. Chaoqiang Jiang & K. T. Chau & Chunhua Liu & Christopher H. T. Lee, 2017. "An Overview of Resonant Circuits for Wireless Power Transfer," Energies, MDPI, vol. 10(7), pages 1-20, June.
    14. Venugopal, Prasanth & Shekhar, Aditya & Visser, Erwin & Scheele, Natalia & Chandra Mouli, Gautham Ram & Bauer, Pavol & Silvester, Sacha, 2018. "Roadway to self-healing highways with integrated wireless electric vehicle charging and sustainable energy harvesting technologies," Applied Energy, Elsevier, vol. 212(C), pages 1226-1239.
    15. Matjaz Rozman & Michael Fernando & Bamidele Adebisi & Khaled M. Rabie & Rupak Kharel & Augustine Ikpehai & Haris Gacanin, 2017. "Combined Conformal Strongly-Coupled Magnetic Resonance for Efficient Wireless Power Transfer," Energies, MDPI, vol. 10(4), pages 1-18, April.
    16. Ilman Sulaeman & Gautham Ram Chandra Mouli & Aditya Shekhar & Pavol Bauer, 2021. "Comparison of AC and DC Nanogrid for Office Buildings with EV Charging, PV and Battery Storage," Energies, MDPI, vol. 14(18), pages 1-22, September.
    17. Haddad, Diala & Konstantinou, Theodora & Aliprantis, Dionysios & Gkritza, Konstantina & Pekarek, Steven & Haddock, John, 2022. "Analysis of the financial viability of high-powered electric roadways: A case study for the state of Indiana," Energy Policy, Elsevier, vol. 171(C).
    18. Yushan Wang & Baowei Song & Zhaoyong Mao, 2020. "Analysis and Experiment for Wireless Power Transfer Systems with Two Kinds Shielding Coils in EVs," Energies, MDPI, vol. 13(1), pages 1-18, January.
    19. Xian Zhang & Yanan Ren & Lin Sha & Qingxin Yang & Xuejing Ni & Fengxian Wang, 2020. "Analysis of Dynamic Characteristics of Foreign Metal Objects under Electromagnetic Force in High-Power Wireless Power Transfer," Energies, MDPI, vol. 13(15), pages 1-15, July.
    20. Vijith Vijayakumaran Nair & Jun Rim Choi, 2016. "An Efficiency Enhancement Technique for a Wireless Power Transmission System Based on a Multiple Coil Switching Technique," Energies, MDPI, vol. 9(3), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:1:p:49-:d:86919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.