IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p5764-d883464.html
   My bibliography  Save this article

Analysis and Visualization of the Instantaneous Spatial Energy Density and Poynting Vector of the Wireless Power Transfer System

Author

Listed:
  • Jianwei Kang

    (Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, School of Manufacturing Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China)

  • Jie Lu

    (Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, School of Manufacturing Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China)

  • Deyu Zeng

    (Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, School of Manufacturing Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China)

  • Xiangyang Shi

    (Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, School of Manufacturing Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China)

Abstract

This study analyzes the instantaneous spatial energy density and Poynting vector in the WPT system and presents time-varying distributions and animations of this energy density and Poynting vector. First, the energy density is decoupled by two self-energy densities of each coil and the mutual energy density of the two coils. Result reveals how the energy is stored in the WPT system. Second, the Poynting vector is analyzed, and it is found that the power is transferred only in the last half period of the Poynting vector, not at every moment of the whole period. This instantaneous Poynting vector also possesses a characteristic that shows no power flow on the condition that the current phase difference equals zero. This finding is different from the energy density and indicates that the instantaneous Poynting vector can perfectly interpret how power is transferred in the WPT system. Finally, a simulation and an experiment were conducted to verify the correctness of the analysis. This study contributes to a deeper and better understanding of the intrinsic characteristics of energy storage and power flow in the WPT system, and can be referred to for WPT system design and optimization when one considers the EMC or human electromagnetic field exposure problem.

Suggested Citation

  • Jianwei Kang & Jie Lu & Deyu Zeng & Xiangyang Shi, 2022. "Analysis and Visualization of the Instantaneous Spatial Energy Density and Poynting Vector of the Wireless Power Transfer System," Energies, MDPI, vol. 15(16), pages 1-18, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5764-:d:883464
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/5764/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/5764/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mattia Simonazzi & Ugo Reggiani & Leonardo Sandrolini, 2022. "Standing Wave Pattern and Distribution of Currents in Resonator Arrays for Wireless Power Transfer," Energies, MDPI, vol. 15(2), pages 1-23, January.
    2. Feng Wen & Xueliang Huang, 2016. "Optimal Magnetic Field Shielding Method by Metallic Sheets in Wireless Power Transfer System," Energies, MDPI, vol. 9(9), pages 1-15, September.
    3. Vincenzo Cirimele & Riccardo Torchio & Antonio Virgillito & Fabio Freschi & Piergiorgio Alotto, 2019. "Challenges in the Electromagnetic Modeling of Road Embedded Wireless Power Transfer," Energies, MDPI, vol. 12(14), pages 1-22, July.
    4. Yuan Liu & Aiguo Patrick Hu, 2018. "Study of Power Flow in an IPT System Based on Poynting Vector Analysis," Energies, MDPI, vol. 11(1), pages 1-12, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soares, Laura & Wang, Hao, 2022. "A study on renewed perspectives of electrified road for wireless power transfer of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    2. Matjaz Rozman & Michael Fernando & Bamidele Adebisi & Khaled M. Rabie & Tim Collins & Rupak Kharel & Augustine Ikpehai, 2017. "A New Technique for Reducing Size of a WPT System Using Two-Loop Strongly-Resonant Inductors," Energies, MDPI, vol. 10(10), pages 1-18, October.
    3. Joao Victor Pinon Pereira Dias & Masafumi Miyatake, 2018. "Increase in Robustness against Effects of Coil Misalignment on Electrical Parameters Using Magnetic Material Layer in Planar Coils of Wireless Power Transfer Transformer," Energies, MDPI, vol. 11(8), pages 1-25, July.
    4. Kafeel Ahmed Kalwar & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan, 2016. "Coil Design for High Misalignment Tolerant Inductive Power Transfer System for EV Charging," Energies, MDPI, vol. 9(11), pages 1-13, November.
    5. Marojahan Tampubolon & Laskar Pamungkas & Huang-Jen Chiu & Yu-Chen Liu & Yao-Ching Hsieh, 2018. "Dynamic Wireless Power Transfer for Logistic Robots," Energies, MDPI, vol. 11(3), pages 1-13, February.
    6. Jacek Maciej Stankiewicz & Agnieszka Choroszucho, 2021. "Comparison of the Efficiency and Load Power in Periodic Wireless Power Transfer Systems with Circular and Square Planar Coils," Energies, MDPI, vol. 14(16), pages 1-24, August.
    7. Lantao Huang & Jiahao Zou & Yihan Zhou & Yan Hong & Jing Zhang & Zinan Ding, 2019. "Effect of Vertical Metal Plate on Transfer Efficiency of the Wireless Power Transfer System," Energies, MDPI, vol. 12(19), pages 1-15, October.
    8. Matjaz Rozman & Michael Fernando & Bamidele Adebisi & Khaled M. Rabie & Rupak Kharel & Augustine Ikpehai & Haris Gacanin, 2017. "Combined Conformal Strongly-Coupled Magnetic Resonance for Efficient Wireless Power Transfer," Energies, MDPI, vol. 10(4), pages 1-18, April.
    9. Ruikun Mai & Youyuan Zhang & Ruimin Dai & Yang Chen & Zhengyou He, 2018. "A Three-Coil Inductively Power Transfer System with Constant Voltage Output," Energies, MDPI, vol. 11(3), pages 1-13, March.
    10. Feng Wen & Xueliang Huang, 2017. "Human Exposure to Electromagnetic Fields from Parallel Wireless Power Transfer Systems," IJERPH, MDPI, vol. 14(2), pages 1-15, February.
    11. Yushan Wang & Baowei Song & Zhaoyong Mao, 2020. "Analysis and Experiment for Wireless Power Transfer Systems with Two Kinds Shielding Coils in EVs," Energies, MDPI, vol. 13(1), pages 1-18, January.
    12. Heqi Xu & Chunfang Wang & Dongwei Xia & Yunrui Liu, 2019. "Design of Magnetic Coupler for Wireless Power Transfer," Energies, MDPI, vol. 12(15), pages 1-12, August.
    13. Heshou Wang & Ka Wai Eric Cheng, 2021. "An Improved and Integrated Design of Segmented Dynamic Wireless Power Transfer for Electric Vehicles," Energies, MDPI, vol. 14(7), pages 1-14, April.
    14. Ruikun Mai & Liwen Lu & Yong Li & Tianren Lin & Zhengyou He, 2017. "Circulating Current Reduction Strategy for Parallel-Connected Inverters Based IPT Systems," Energies, MDPI, vol. 10(3), pages 1-17, February.
    15. Mohamed, Ahmed A.S. & Shaier, Ahmed A. & Metwally, Hamid & Selem, Sameh I., 2020. "A comprehensive overview of inductive pad in electric vehicles stationary charging," Applied Energy, Elsevier, vol. 262(C).
    16. Mauro Parise & Fabrizio Loreto & Daniele Romano & Giulio Antonini & Jonas Ekman, 2021. "Accurate Computation of Mutual Inductance of Non Coaxial Pancake Coils," Energies, MDPI, vol. 14(16), pages 1-11, August.
    17. Yuan Li & Shumei Zhang & Ze Cheng, 2021. "Double-Coil Dynamic Shielding Technology for Wireless Power Transmission in Electric Vehicles," Energies, MDPI, vol. 14(17), pages 1-20, August.
    18. Md Morshed Alam & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan, 2017. "Dynamic Charging of Electric Vehicle with Negligible Power Transfer Fluctuation," Energies, MDPI, vol. 10(5), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5764-:d:883464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.