IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2018i1p22-d192467.html
   My bibliography  Save this article

Modelling of a Variable Refrigerant Flow System in EnergyPlus for Building Energy Simulation in an Open Building Information Modelling Environment

Author

Listed:
  • Bárbara Torregrosa-Jaime

    (CYPE Ingenieros, S.A., Avda. Eusebio Sempere, 5, 03003 Alicante, Spain)

  • Pedro J. Martínez

    (Departamento de Ingeniería Mecánica y Energía, Universidad Miguel Hernández, Avda. de la Universidad, s/n, 03202 Elche, Spain)

  • Benjamín González

    (CYPE Ingenieros, S.A., Avda. Eusebio Sempere, 5, 03003 Alicante, Spain)

  • Gaspar Payá-Ballester

    (CYPE Ingenieros, S.A., Avda. Eusebio Sempere, 5, 03003 Alicante, Spain)

Abstract

Variable refrigerant flow (VRF) systems are one possible tool to meet the objective that all new buildings must be nearly zero-energy buildings by 31 December 2020. Building Information Modelling (BIM) is a methodology that centralizes building construction project information in a digital model promoting collaboration between all its agents. The objectives of this work were to develop a more precise model of the VRF system than the one available in EnergyPlus version 8.9 (US Department of Energy) and to study the operation of this system in an office building under different climates by implementing the building energy simulation in an Open BIM workflow. The percentage deviation between the estimation of the VRF energy consumption with the standard and the new model was 6.91% and 1.59% for cooling and heating respectively in the case of Barcelona and 3.27% and 0.97% respectively in the case of Madrid. The energy performance class of the analysed building was A for each climatic zone. The primary energy consumption of the office building equipped with the VRF system was of 65.8 kWh/(m 2 ·y) for the Mediterranean climate of Barcelona and 72.4 kWh/(m 2 ·y) for the Continental climate of Madrid.

Suggested Citation

  • Bárbara Torregrosa-Jaime & Pedro J. Martínez & Benjamín González & Gaspar Payá-Ballester, 2018. "Modelling of a Variable Refrigerant Flow System in EnergyPlus for Building Energy Simulation in an Open Building Information Modelling Environment," Energies, MDPI, vol. 12(1), pages 1-16, December.
  • Handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:22-:d:192467
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/1/22/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/1/22/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Simon Pezzutto & Matteo De Felice & Reza Fazeli & Lukas Kranzl & Stefano Zambotti, 2017. "Status Quo of the Air-Conditioning Market in Europe: Assessment of the Building Stock," Energies, MDPI, vol. 10(9), pages 1-17, August.
    2. Bárbara Torregrosa-Jaime & Benjamín González & Pedro J. Martínez & Gaspar Payá-Ballester, 2018. "Analysis of the Operation of an Aerothermal Heat Pump in a Residential Building Using Building Information Modelling," Energies, MDPI, vol. 11(7), pages 1-17, June.
    3. Yu, Xinqiao & Yan, Da & Sun, Kaiyu & Hong, Tianzhen & Zhu, Dandan, 2016. "Comparative study of the cooling energy performance of variable refrigerant flow systems and variable air volume systems in office buildings," Applied Energy, Elsevier, vol. 183(C), pages 725-736.
    4. Ioan Sarbu & Calin Sebarchievici, 2016. "Performance Evaluation of Radiator and Radiant Floor Heating Systems for an Office Room Connected to a Ground-Coupled Heat Pump," Energies, MDPI, vol. 9(4), pages 1-19, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ciro Aprea & Laura Canale & Marco Dell’Isola & Giorgio Ficco & Andrea Frattolillo & Angelo Maiorino & Fabio Petruzziello, 2023. "On the Use of Ultrasonic Flowmeters for Cooling Energy Metering and Sub-Metering in Direct Expansion Systems," Energies, MDPI, vol. 16(12), pages 1-16, June.
    2. Braungardt, Sibylle & Bürger, Veit & Zieger, Jana & Bosselaar, Lex, 2019. "How to include cooling in the EU Renewable Energy Directive? Strategies and policy implications," Energy Policy, Elsevier, vol. 129(C), pages 260-267.
    3. Simon Pezzutto & Giulio Quaglini & Philippe Riviere & Lukas Kranzl & Antonio Novelli & Andrea Zambito & Luigi Bottecchia & Eric Wilczynski, 2022. "Space Cooling Market in Europe: Assessment of the Final Energy Consumption for the Year 2016," Sustainability, MDPI, vol. 14(5), pages 1-23, February.
    4. Shu Su & Xiaodong Li & Borong Lin & Hongyang Li & Jingfeng Yuan, 2019. "A Comparison of the Environmental Performance of Cooling and Heating among Different Household Types in China’s Hot Summer–Cold Winter Zone," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
    5. Kang, Won Hee & Lee, Jong Man & Yeon, Sang Hun & Park, Min Kyeong & Kim, Chul Ho & Lee, Je Hyeon & Moon, Jin Woo & Lee, Kwang Ho, 2020. "Modeling, calibration, and sensitivity analysis of direct expansion AHU-Water source VRF system," Energy, Elsevier, vol. 199(C).
    6. Georges Atallah & Faris Tarlochan, 2021. "Comparison between Variable and Constant Refrigerant Flow Air Conditioning Systems in Arid Climate: Life Cycle Cost Analysis and Energy Savings," Sustainability, MDPI, vol. 13(18), pages 1-13, September.
    7. Haiyan Duan & Shipei Zhang & Siying Duan & Weicheng Zhang & Zhiyuan Duan & Shuo Wang & Junnian Song & Xian’en Wang, 2019. "Carbon Emissions Peak Prediction and the Reduction Pathway in Buildings during Operation in Jilin Province Based on LEAP," Sustainability, MDPI, vol. 11(17), pages 1-23, August.
    8. Zhang, Zi-Yang & Zhang, Chun-Lu & Xiao, Fu, 2020. "Energy-efficient decentralized control method with enhanced robustness for multi-evaporator air conditioning systems," Applied Energy, Elsevier, vol. 279(C).
    9. Yan, Huaxia & Xia, Yudong & Deng, Shiming, 2017. "Simulation study on a three-evaporator air conditioning system for simultaneous indoor air temperature and humidity control," Applied Energy, Elsevier, vol. 207(C), pages 294-304.
    10. Silvia Cesari & Paolo Valdiserri & Maddalena Coccagna & Sante Mazzacane, 2020. "The Energy Saving Potential of Wide Windows in Hospital Patient Rooms, Optimizing the Type of Glazing and Lighting Control Strategy under Different Climatic Conditions," Energies, MDPI, vol. 13(8), pages 1-24, April.
    11. Cristina Piselli & Jessica Romanelli & Matteo Di Grazia & Augusto Gavagni & Elisa Moretti & Andrea Nicolini & Franco Cotana & Francesco Strangis & Henk J. L. Witte & Anna Laura Pisello, 2020. "An Integrated HBIM Simulation Approach for Energy Retrofit of Historical Buildings Implemented in a Case Study of a Medieval Fortress in Italy," Energies, MDPI, vol. 13(10), pages 1-21, May.
    12. Ignacio López Paniagua & Ángel Jiménez Álvaro & Javier Rodríguez Martín & Celina González Fernández & Rafael Nieto Carlier, 2019. "Comparison of Transcritical CO 2 and Conventional Refrigerant Heat Pump Water Heaters for Domestic Applications," Energies, MDPI, vol. 12(3), pages 1-17, February.
    13. Lin, Haiyang & Wang, Qinxing & Wang, Yu & Liu, Yiling & Sun, Qie & Wennersten, Ronald, 2017. "The energy-saving potential of an office under different pricing mechanisms – Application of an agent-based model," Applied Energy, Elsevier, vol. 202(C), pages 248-258.
    14. Simon Pezzutto & Giulio Quaglini & Philippe Riviere & Lukas Kranzl & Antonio Novelli & Andrea Zambito & Eric Wilczynski, 2022. "Screening of Cooling Technologies in Europe: Alternatives to Vapour Compression and Possible Market Developments," Sustainability, MDPI, vol. 14(5), pages 1-24, March.
    15. Gilani, Hooman Azad & Hoseinzadeh, Siamak & Karimi, Hirou & Karimi, Ako & Hassanzadeh, Amir & Garcia, Davide Astiaso, 2021. "Performance analysis of integrated solar heat pump VRF system for the low energy building in Mediterranean island," Renewable Energy, Elsevier, vol. 174(C), pages 1006-1019.
    16. Simon Pezzutto & Silvia Croce & Stefano Zambotti & Lukas Kranzl & Antonio Novelli & Pietro Zambelli, 2019. "Assessment of the Space Heating and Domestic Hot Water Market in Europe—Open Data and Results," Energies, MDPI, vol. 12(9), pages 1-16, May.
    17. Wang, Huan & Chen, Wenying & Shi, Jingcheng, 2018. "Low carbon transition of global building sector under 2- and 1.5-degree targets," Applied Energy, Elsevier, vol. 222(C), pages 148-157.
    18. Simon Pezzutto & Giulio Quaglini & Andrea Zambito & Antonio Novelli & Philippe Riviere & Lukas Kranzl & Eric Wilczynski, 2022. "Potential Evolution of the Cooling Market in the EU27+UK: An Outlook until 2030," Sustainability, MDPI, vol. 14(8), pages 1-25, April.
    19. Bilardo, Matteo & Ferrara, Maria & Fabrizio, Enrico, 2022. "The role of solar cooling for nearly zero energy multifamily buildings: Performance analysis across different climates," Renewable Energy, Elsevier, vol. 194(C), pages 1343-1353.
    20. Piotr Jadwiszczak & Jakub Jurasz & Bartosz Kaźmierczak & Elżbieta Niemierka & Wandong Zheng, 2021. "Factors Shaping A/W Heat Pumps CO₂ Emissions—Evidence from Poland," Energies, MDPI, vol. 14(6), pages 1-13, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:22-:d:192467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.