IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2633-d173365.html
   My bibliography  Save this article

Biogas and Ethanol from Wheat Grain or Straw: Is There a Trade-Off between Climate Impact, Avoidance of iLUC and Production Cost?

Author

Listed:
  • Mikael Lantz

    (Environmental and Energy Systems Studies, Lund University, Lund 22100, Sweden)

  • Thomas Prade

    (Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp 23053, Sweden)

  • Serina Ahlgren

    (Energy and Technology, Swedish University of Agricultural Sciences, Uppsala 75007, Sweden)

  • Lovisa Björnsson

    (Environmental and Energy Systems Studies, Lund University, Lund 22100, Sweden)

Abstract

Current EU policy calls for decreased emissions of greenhouse gases (GHG) by i.e., replacing fossil fuel in the transportation sector with sustainable biofuels. To avoid indirect land use change (iLUC), the EU at the same time strives to limit the use of crops and to increase the use of residues. In this study we compare climate impact and production cost for biogas and ethanol based on wheat grain and straw, respectively, in a Swedish context. The economic competitiveness for ethanol from straw vs. grain is evaluated based on the mandatory emission reduction for fossil vehicle fuels implemented since July 2018 in Sweden. The result of this study clearly shows that biogas and ethanol from straw have the lowest GHG emissions regardless of the calculation method used, although biofuels from grain also fulfill EU GHG reduction criteria even when suggested iLUC factors are included. It was also shown that the cost of producing straw-based biofuels was higher, thus there is a trade-off between climate impact and costs. The GHG reduction mandate adopted in Sweden partly compensates for this, but is not enough to make ethanol from straw competitive from an economic perspective.

Suggested Citation

  • Mikael Lantz & Thomas Prade & Serina Ahlgren & Lovisa Björnsson, 2018. "Biogas and Ethanol from Wheat Grain or Straw: Is There a Trade-Off between Climate Impact, Avoidance of iLUC and Production Cost?," Energies, MDPI, vol. 11(10), pages 1-31, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2633-:d:173365
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2633/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2633/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Börjesson, Pål & Gustavsson, Leif, 1996. "Regional production and utilization of biomass in Sweden," Energy, Elsevier, vol. 21(9), pages 747-764.
    2. Ekman, Anna & Wallberg, Ola & Joelsson, Elisabeth & Börjesson, Pål, 2013. "Possibilities for sustainable biorefineries based on agricultural residues – A case study of potential straw-based ethanol production in Sweden," Applied Energy, Elsevier, vol. 102(C), pages 299-308.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jarosław Gocławski & Ewa Korzeniewska & Joanna Sekulska-Nalewajko & Paweł Kiełbasa & Tomasz Dróżdż, 2022. "Method of Biomass Discrimination for Fast Assessment of Calorific Value," Energies, MDPI, vol. 15(7), pages 1-23, March.
    2. Puricelli, S. & Cardellini, G. & Casadei, S. & Faedo, D. & van den Oever, A.E.M. & Grosso, M., 2021. "A review on biofuels for light-duty vehicles in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Sylvia Haus & Lovisa Björnsson & Pål Börjesson, 2020. "Lignocellulosic Ethanol in a Greenhouse Gas Emission Reduction Obligation System—A Case Study of Swedish Sawdust Based-Ethanol Production," Energies, MDPI, vol. 13(5), pages 1-15, February.
    4. Alessandro Suardi & Sergio Saia & Walter Stefanoni & Carina Gunnarsson & Martin Sundberg & Luigi Pari, 2020. "Admixing Chaff with Straw Increased the Residues Collected without Compromising Machinery Efficiencies," Energies, MDPI, vol. 13(7), pages 1-14, April.
    5. Luis Armando Becerra-Pérez & Luis Rincón & John A. Posada-Duque, 2022. "Logistics and Costs of Agricultural Residues for Cellulosic Ethanol Production," Energies, MDPI, vol. 15(12), pages 1-18, June.
    6. Nicoletta Gronchi & Lorenzo Favaro & Lorenzo Cagnin & Silvia Brojanigo & Valentino Pizzocchero & Marina Basaglia & Sergio Casella, 2019. "Novel Yeast Strains for the Efficient Saccharification and Fermentation of Starchy By-Products to Bioethanol," Energies, MDPI, vol. 12(4), pages 1-13, February.
    7. Piotr Gradziuk & Barbara Gradziuk & Anna Trocewicz & Błażej Jendrzejewski, 2020. "Potential of Straw for Energy Purposes in Poland—Forecasts Based on Trend and Causal Models," Energies, MDPI, vol. 13(19), pages 1-22, September.
    8. Yongzhong Jiang & Valerii Havrysh & Oleksandr Klymchuk & Vitalii Nitsenko & Tomas Balezentis & Dalia Streimikiene, 2019. "Utilization of Crop Residue for Power Generation: The Case of Ukraine," Sustainability, MDPI, vol. 11(24), pages 1-21, December.
    9. Johanna Olofsson, 2021. "Time-Dependent Climate Impact of Utilizing Residual Biomass for Biofuels—The Combined Influence of Modelling Choices and Climate Impact Metrics," Energies, MDPI, vol. 14(14), pages 1-17, July.
    10. Daraei, Mahsa & Avelin, Anders & Dotzauer, Erik & Thorin, Eva, 2019. "Evaluation of biofuel production integrated with existing CHP plants and the impacts on production planning of the system – A case study," Applied Energy, Elsevier, vol. 252(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikodinoska, Natasha & Paletto, Alessandro & Pastorella, Fabio & Granvik, Madeleine & Franzese, Pier Paolo, 2018. "Assessing, valuing and mapping ecosystem services at city level: The case of Uppsala (Sweden)," Ecological Modelling, Elsevier, vol. 368(C), pages 411-424.
    2. Soam, Shveta & Kapoor, Manali & Kumar, Ravindra & Borjesson, Pal & Gupta, Ravi P. & Tuli, Deepak K., 2016. "Global warming potential and energy analysis of second generation ethanol production from rice straw in India," Applied Energy, Elsevier, vol. 184(C), pages 353-364.
    3. Weiser, Christian & Zeller, Vanessa & Reinicke, Frank & Wagner, Bernhard & Majer, Stefan & Vetter, Armin & Thraen, Daniela, 2014. "Integrated assessment of sustainable cereal straw potential and different straw-based energy applications in Germany," Applied Energy, Elsevier, vol. 114(C), pages 749-762.
    4. Kenneth Möllersten & Lin Gao & Jinyue Yan, 2006. "CO 2 Capture in Pulp and Paper Mills: CO 2 Balances and Preliminary Cost Assessment," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(5), pages 1129-1150, September.
    5. Venturini, Giada & Pizarro-Alonso, Amalia & Münster, Marie, 2019. "How to maximise the value of residual biomass resources: The case of straw in Denmark," Applied Energy, Elsevier, vol. 250(C), pages 369-388.
    6. Daraei, Mahsa & Avelin, Anders & Dotzauer, Erik & Thorin, Eva, 2019. "Evaluation of biofuel production integrated with existing CHP plants and the impacts on production planning of the system – A case study," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    7. Sosa, Amanda & Acuna, Mauricio & McDonnell, Kevin & Devlin, Ger, 2015. "Controlling moisture content and truck configurations to model and optimise biomass supply chain logistics in Ireland," Applied Energy, Elsevier, vol. 137(C), pages 338-351.
    8. Budzianowski, Wojciech M. & Postawa, Karol, 2016. "Total Chain Integration of sustainable biorefinery systems," Applied Energy, Elsevier, vol. 184(C), pages 1432-1446.
    9. Manzone, Marco & Calvo, Angela, 2017. "Woodchip transportation: Climatic and congestion influence on productivity, energy and CO2 emission of agricultural and industrial convoys," Renewable Energy, Elsevier, vol. 108(C), pages 250-259.
    10. Maung, Thein A. & Gustafson, Cole R. & Saxowsky, David M. & Nowatzki, John & Miljkovic, Tatjana & Ripplinger, David, 2013. "The logistics of supplying single vs. multi-crop cellulosic feedstocks to a biorefinery in southeast North Dakota," Applied Energy, Elsevier, vol. 109(C), pages 229-238.
    11. Moraes, Bruna S. & Junqueira, Tassia L. & Pavanello, Lucas G. & Cavalett, Otávio & Mantelatto, Paulo E. & Bonomi, Antonio & Zaiat, Marcelo, 2014. "Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy, environmental, and economic perspectives: Profit or expense?," Applied Energy, Elsevier, vol. 113(C), pages 825-835.
    12. Whittaker, Carly & Borrion, Aiduan Li & Newnes, Linda & McManus, Marcelle, 2014. "The renewable energy directive and cereal residues," Applied Energy, Elsevier, vol. 122(C), pages 207-215.
    13. Pettersson, Karin & Wetterlund, Elisabeth & Athanassiadis, Dimitris & Lundmark, Robert & Ehn, Christian & Lundgren, Joakim & Berglin, Niklas, 2015. "Integration of next-generation biofuel production in the Swedish forest industry – A geographically explicit approach," Applied Energy, Elsevier, vol. 154(C), pages 317-332.
    14. Renata Marks-Bielska & Stanisław Bielski & Anastasija Novikova & Kęstutis Romaneckas, 2019. "Straw Stocks as a Source of Renewable Energy. A Case Study of a District in Poland," Sustainability, MDPI, vol. 11(17), pages 1-18, August.
    15. Mundaca, Luis & Román, Rocio & Cansino, José M., 2015. "Towards a Green Energy Economy? A macroeconomic-climate evaluation of Sweden’s CO2 emissions," Applied Energy, Elsevier, vol. 148(C), pages 196-209.
    16. Meneses-Jácome, Alexander & Diaz-Chavez, Rocío & Velásquez-Arredondo, Héctor I. & Cárdenas-Chávez, Diana L. & Parra, Roberto & Ruiz-Colorado, Angela A., 2016. "Sustainable Energy from agro-industrial wastewaters in Latin-America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1249-1262.
    17. Gustavsson, Leif & Borjesson, Pal, 1998. "CO2 mitigation cost: Bioenergy systems and natural gas systems with decarbonization," Energy Policy, Elsevier, vol. 26(9), pages 699-713, August.
    18. Gustavsson, Leif & Karlsson, Asa, 2002. "A system perspective on the heating of detached houses," Energy Policy, Elsevier, vol. 30(7), pages 553-574, June.
    19. Barbanera, M. & Lascaro, E. & Foschini, D. & Cotana, F. & Buratti, C., 2018. "Optimization of bioethanol production from steam exploded hornbeam wood (Ostrya carpinifolia) by enzymatic hydrolysis," Renewable Energy, Elsevier, vol. 124(C), pages 136-143.
    20. Anna Bartkowiak & Piotr Bartkowiak & Grzegorz Kinelski, 2022. "Efficiency of Shaping the Value Chain in the Area of the Use of Raw Materials in Agro-Biorefinery in Sustainable Development," Energies, MDPI, vol. 15(17), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2633-:d:173365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.