IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2552-d171819.html
   My bibliography  Save this article

Experimental Methodology and Thermal Loss Tests on Small Size Absorber Tubes for Solar Applications

Author

Listed:
  • Giacomo Pierucci

    (Department of Industrial Engineering, University of Florence, Florence 50139, Italy)

  • Sahand Hosouli

    (Department of Industrial Engineering, University of Florence, Florence 50139, Italy)

  • Michele Salvestroni

    (Department of Industrial Engineering, University of Florence, Florence 50139, Italy)

  • Matteo Messeri

    (Department of Industrial Engineering, University of Florence, Florence 50139, Italy)

  • Federico Fagioli

    (Department of Industrial Engineering, University of Florence, Florence 50139, Italy)

  • Francesco Taddei

    (Department of Industrial Engineering, University of Florence, Florence 50139, Italy)

  • Maurizio De Lucia

    (Department of Industrial Engineering, University of Florence, Florence 50139, Italy)

Abstract

Since thermal energy for residential applications is a relevant part of the entire energy demand, solar technologies could play an important role in decreasing fossil fuel consumption. A novel small parabolic trough collector matched with a storage system is developed to satisfy heating and required hot water demand for a single house. A new receiver concept is designed and a prototype is realized using two coaxial tubes (three spattered layers). A covering glass with vacuum inside completes the high tech design. Because of numerous innovations including the small size, a specific off-Sun measurement procedure is set up with the aim of evaluating the real thermal loss and direct heating of the absorber by Joule effect. A novel test procedure is proposed for the one-end absorber. The receiver performance results are reported under vacuum conditions and with air at ambient pressure.

Suggested Citation

  • Giacomo Pierucci & Sahand Hosouli & Michele Salvestroni & Matteo Messeri & Federico Fagioli & Francesco Taddei & Maurizio De Lucia, 2018. "Experimental Methodology and Thermal Loss Tests on Small Size Absorber Tubes for Solar Applications," Energies, MDPI, vol. 11(10), pages 1-9, September.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2552-:d:171819
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2552/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2552/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Viebahn, Peter & Lechon, Yolanda & Trieb, Franz, 2011. "The potential role of concentrated solar power (CSP) in Africa and Europe--A dynamic assessment of technology development, cost development and life cycle inventories until 2050," Energy Policy, Elsevier, vol. 39(8), pages 4420-4430, August.
    2. Zou, Bin & Dong, Jiankai & Yao, Yang & Jiang, Yiqiang, 2016. "An experimental investigation on a small-sized parabolic trough solar collector for water heating in cold areas," Applied Energy, Elsevier, vol. 163(C), pages 396-407.
    3. Jamal-Abad, Milad Tajik & Saedodin, Seyfollah & Aminy, Mohammad, 2017. "Experimental investigation on a solar parabolic trough collector for absorber tube filled with porous media," Renewable Energy, Elsevier, vol. 107(C), pages 156-163.
    4. Fernández-García, A. & Zarza, E. & Valenzuela, L. & Pérez, M., 2010. "Parabolic-trough solar collectors and their applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1695-1721, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gianluca Marotta & Paola Sansoni & Franco Francini & David Jafrancesco & Maurizio De Lucia & Daniela Fontani, 2020. "Structured Light Profilometry on m-PTC," Energies, MDPI, vol. 13(21), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Teerapath Limboonruang & Muyiwa Oyinlola & Dani Harmanto & Pracha Bunyawanichakul & Nittalin Phunapai, 2023. "Optimizing Solar Parabolic Trough Receivers with External Fins: An Experimental Study on Enhancing Heat Transfer and Thermal Efficiency," Energies, MDPI, vol. 16(18), pages 1-22, September.
    3. Akbarzadeh, Sanaz & Valipour, Mohammad Sadegh, 2020. "Energy and exergy analysis of a parabolic trough collector using helically corrugated absorber tube," Renewable Energy, Elsevier, vol. 155(C), pages 735-747.
    4. Malagueta, Diego & Szklo, Alexandre & Borba, Bruno Soares Moreira Cesar & Soria, Rafael & Aragão, Raymundo & Schaeffer, Roberto & Dutra, Ricardo, 2013. "Assessing incentive policies for integrating centralized solar power generation in the Brazilian electric power system," Energy Policy, Elsevier, vol. 59(C), pages 198-212.
    5. Soria, Rafael & Portugal-Pereira, Joana & Szklo, Alexandre & Milani, Rodrigo & Schaeffer, Roberto, 2015. "Hybrid concentrated solar power (CSP)–biomass plants in a semiarid region: A strategy for CSP deployment in Brazil," Energy Policy, Elsevier, vol. 86(C), pages 57-72.
    6. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    7. Pavlović, Tomislav M. & Radonjić, Ivana S. & Milosavljević, Dragana D. & Pantić, Lana S., 2012. "A review of concentrating solar power plants in the world and their potential use in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3891-3902.
    8. Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.
    9. Hernández-Moro, J. & Martínez-Duart, J.M., 2013. "Analytical model for solar PV and CSP electricity costs: Present LCOE values and their future evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 119-132.
    10. Ahmed, K. Arshad & Natarajan, E., 2020. "Numerical investigation on the effect of toroidal rings in a parabolic trough receiver with the operation of gases: An energy and exergy analysis," Energy, Elsevier, vol. 203(C).
    11. Abdulhamed, Ali Jaber & Adam, Nor Mariah & Ab-Kadir, Mohd Zainal Abidin & Hairuddin, Abdul Aziz, 2018. "Review of solar parabolic-trough collector geometrical and thermal analyses, performance, and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 822-831.
    12. Manikandan, G.K. & Iniyan, S. & Goic, Ranko, 2019. "Enhancing the optical and thermal efficiency of a parabolic trough collector – A review," Applied Energy, Elsevier, vol. 235(C), pages 1524-1540.
    13. Forman, Patrick & Penkert, Sebastian & Kämper, Christoph & Stallmann, Tobias & Mark, Peter & Schnell, Jürgen, 2020. "A survey of solar concrete shell collectors for parabolic troughs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    14. Lamrani, Bilal & Kuznik, Frédéric & Draoui, Abdeslam, 2020. "Thermal performance of a coupled solar parabolic trough collector latent heat storage unit for solar water heating in large buildings," Renewable Energy, Elsevier, vol. 162(C), pages 411-426.
    15. Aseri, Tarun Kumar & Sharma, Chandan & Kandpal, Tara C., 2021. "Cost reduction potential in parabolic trough collector based CSP plants: A case study for India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    16. Tang, X.Y. & Yang, W.W. & Yang, Y. & Jiao, Y.H. & Zhang, T., 2021. "A design method for optimizing the secondary reflector of a parabolic trough solar concentrator to achieve uniform heat flux distribution," Energy, Elsevier, vol. 229(C).
    17. Jin, Jian & Ling, Yunyi & Hao, Yong, 2017. "Similarity analysis of parabolic-trough solar collectors," Applied Energy, Elsevier, vol. 204(C), pages 958-965.
    18. Claudia Toro & Matteo V. Rocco & Emanuela Colombo, 2016. "Exergy and Thermoeconomic Analyses of Central Receiver Concentrated Solar Plants Using Air as Heat Transfer Fluid," Energies, MDPI, vol. 9(11), pages 1-17, October.
    19. Kost, Christoph & Engelken, Maximilian & Schlegl, Thomas, 2012. "Value generation of future CSP projects in North Africa," Energy Policy, Elsevier, vol. 46(C), pages 88-99.
    20. Wiesław Zima & Artur Cebula & Piotr Cisek, 2020. "Mathematical Model of a Sun-Tracked Parabolic Trough Collector and Its Verification," Energies, MDPI, vol. 13(16), pages 1-24, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2552-:d:171819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.