IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v134y2020ics1364032120306195.html
   My bibliography  Save this article

A survey of solar concrete shell collectors for parabolic troughs

Author

Listed:
  • Forman, Patrick
  • Penkert, Sebastian
  • Kämper, Christoph
  • Stallmann, Tobias
  • Mark, Peter
  • Schnell, Jürgen

Abstract

Concrete shell collectors offer an alternative to conventional parabolic trough collectors. The principle design concept is derived from existing barrel rooves that effectively bridge large spans in halls or buildings with minimum material usage. The concrete troughs merge the bearing structure and mirroring surface to just one shell of a few centimeters. They are made of high-strength concrete and track the sun via pure axial rotation or lateral movements that avoid any lifting works. In the present contribution, basic constraints in materials, geometry, and static calculation are derived and converted into a framework of possible designs. This contribution thereby presents a survey of concepts that range from small-scale prototypes to full-scale realizations of 140 m2 apertures and large-aperture concepts with a 10 m width. Design concepts with bearing and drive systems as well as optimization-based form findings are introduced to elaborate shells of minimum weight with solid sections, stiffeners, and hollow cores.

Suggested Citation

  • Forman, Patrick & Penkert, Sebastian & Kämper, Christoph & Stallmann, Tobias & Mark, Peter & Schnell, Jürgen, 2020. "A survey of solar concrete shell collectors for parabolic troughs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
  • Handle: RePEc:eee:rensus:v:134:y:2020:i:c:s1364032120306195
    DOI: 10.1016/j.rser.2020.110331
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120306195
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110331?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Coccia, Gianluca & Di Nicola, Giovanni & Sotte, Marco, 2015. "Design, manufacture, and test of a prototype for a parabolic trough collector for industrial process heat," Renewable Energy, Elsevier, vol. 74(C), pages 727-736.
    2. Zou, Bin & Dong, Jiankai & Yao, Yang & Jiang, Yiqiang, 2016. "An experimental investigation on a small-sized parabolic trough solar collector for water heating in cold areas," Applied Energy, Elsevier, vol. 163(C), pages 396-407.
    3. Abdulhamed, Ali Jaber & Adam, Nor Mariah & Ab-Kadir, Mohd Zainal Abidin & Hairuddin, Abdul Aziz, 2018. "Review of solar parabolic-trough collector geometrical and thermal analyses, performance, and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 822-831.
    4. Fernández-García, A. & Zarza, E. & Valenzuela, L. & Pérez, M., 2010. "Parabolic-trough solar collectors and their applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1695-1721, September.
    5. Jebasingh, V.K. & Herbert, G.M. Joselin, 2016. "A review of solar parabolic trough collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1085-1091.
    6. Sharaf, Omar Z. & Orhan, Mehmet F., 2015. "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part II – Implemented systems, performance assessment, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1566-1633.
    7. Evangelisti, Luca & De Lieto Vollaro, Roberto & Asdrubali, Francesco, 2019. "Latest advances on solar thermal collectors: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    8. Winkelmann, Ulf & Kämper, Christoph & Höffer, Rüdiger & Forman, Patrick & Ahrens, Mark Alexander & Mark, Peter, 2020. "Wind actions on large-aperture parabolic trough solar collectors: Wind tunnel tests and structural analysis," Renewable Energy, Elsevier, vol. 146(C), pages 2390-2407.
    9. Kasaeian, Alibakhsh & Tabasi, Sanaz & Ghaderian, Javad & Yousefi, Hossein, 2018. "A review on parabolic trough/Fresnel based photovoltaic thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 193-204.
    10. Tyagi, V.V. & Panwar, N.L. & Rahim, N.A. & Kothari, Richa, 2012. "Review on solar air heating system with and without thermal energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2289-2303.
    11. Al-Alili, A. & Hwang, Y. & Radermacher, R. & Kubo, I., 2012. "A high efficiency solar air conditioner using concentrating photovoltaic/thermal collectors," Applied Energy, Elsevier, vol. 93(C), pages 138-147.
    12. Fuqiang, Wang & Ziming, Cheng & Jianyu, Tan & Yuan, Yuan & Yong, Shuai & Linhua, Liu, 2017. "Progress in concentrated solar power technology with parabolic trough collector system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1314-1328.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gharat, Punit V. & Bhalekar, Snehal S. & Dalvi, Vishwanath H. & Panse, Sudhir V. & Deshmukh, Suresh P. & Joshi, Jyeshtharaj B., 2021. "Chronological development of innovations in reflector systems of parabolic trough solar collector (PTC) - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Abdulhamed, Ali Jaber & Adam, Nor Mariah & Ab-Kadir, Mohd Zainal Abidin & Hairuddin, Abdul Aziz, 2018. "Review of solar parabolic-trough collector geometrical and thermal analyses, performance, and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 822-831.
    3. Liu, Shuaishuai & Yang, Bin & Hou, Yutian & Yu, Xiaohui, 2022. "Effects of geometric configurations on the thermal-mechanical properties of parabolic trough receivers based on coupled optical-thermal-stress model," Renewable Energy, Elsevier, vol. 199(C), pages 929-942.
    4. Wang, Qiliang & Hu, Mingke & Yang, Honglun & Cao, Jingyu & Li, Jing & Su, Yuehong & Pei, Gang, 2019. "Performance evaluation and analyses of novel parabolic trough evacuated collector tubes with spectrum-selective glass envelope," Renewable Energy, Elsevier, vol. 138(C), pages 793-804.
    5. Lozano-Medina, Alexis & Manzano, Luis & Marcos, José D. & Blanco-Marigorta, Ana M., 2019. "Design of a concentrating solar thermal collector installation for a hotel complex in Gran Canaria," Energy, Elsevier, vol. 183(C), pages 803-811.
    6. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    7. Bushra, Nayab & Hartmann, Timo, 2019. "A review of state-of-the-art reflective two-stage solar concentrators: Technology categorization and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    8. Lamrani, Bilal & Kuznik, Frédéric & Draoui, Abdeslam, 2020. "Thermal performance of a coupled solar parabolic trough collector latent heat storage unit for solar water heating in large buildings," Renewable Energy, Elsevier, vol. 162(C), pages 411-426.
    9. Jebasingh, V.K. & Herbert, G.M. Joselin, 2016. "A review of solar parabolic trough collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1085-1091.
    10. Marco Milanese & Gianpiero Colangelo & Arturo de Risi, 2021. "Development of a High-Flux Solar Simulator for Experimental Testing of High-Temperature Applications," Energies, MDPI, vol. 14(11), pages 1-18, May.
    11. Cheng, Ze-Dong & Zhao, Xue-Ru & He, Ya-Ling, 2018. "Novel optical efficiency formulas for parabolic trough solar collectors: Computing method and applications," Applied Energy, Elsevier, vol. 224(C), pages 682-697.
    12. Winkelmann, Ulf & Kämper, Christoph & Höffer, Rüdiger & Forman, Patrick & Ahrens, Mark Alexander & Mark, Peter, 2020. "Wind actions on large-aperture parabolic trough solar collectors: Wind tunnel tests and structural analysis," Renewable Energy, Elsevier, vol. 146(C), pages 2390-2407.
    13. Yunhong Shi & Davood Toghraie & Farzad Nadi & Gholamreza Ahmadi & As’ad Alizadeh & Long Zhang, 2021. "The effect of the pitch angle, two-axis tracking system, and wind velocity on the parabolic trough solar collector thermal performance," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17329-17348, December.
    14. Rehan, Mirza Abdullah & Ali, Muzaffar & Sheikh, Nadeem Ahmed & Khalil, M. Shahid & Chaudhary, Ghulam Qadar & Rashid, Tanzeel ur & Shehryar, M., 2018. "Experimental performance analysis of low concentration ratio solar parabolic trough collectors with nanofluids in winter conditions," Renewable Energy, Elsevier, vol. 118(C), pages 742-751.
    15. Kumaresan, G. & Sudhakar, P. & Santosh, R. & Velraj, R., 2017. "Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1363-1374.
    16. Robertson, John & Riggs, Brian & Islam, Kazi & Ji, Yaping Vera & Spitler, Christopher M. & Gupta, Naman & Krut, Dimitri & Ermer, Jim & Miller, Fletcher & Codd, Daniel & Escarra, Matthew, 2019. "Field testing of a spectrum-splitting transmissive concentrator photovoltaic module," Renewable Energy, Elsevier, vol. 139(C), pages 806-814.
    17. Fei Cao & Jiarui Pang & Xianzhe Gu & Miaomiao Wang & Yanqin Shangguan, 2023. "Performance Simulation of Solar Trough Concentrators: Optical and Thermal Comparisons," Energies, MDPI, vol. 16(4), pages 1-18, February.
    18. Moudakkar, Touria & El Hallaoui, Z. & Vaudreuil, S. & Bounahmidi, T., 2019. "Modeling and performance analysis of a PTC for industrial phosphate flash drying," Energy, Elsevier, vol. 166(C), pages 1134-1148.
    19. Andrea Gilioli & Francesco Cadini & Luca Abbiati & Giulio Angelo Guido Solero & Massimo Fossati & Andrea Manes & Lino Carnelli & Carla Lazzari & Stefano Cardamone & Marco Giglio, 2021. "Finite Element Modelling of a Parabolic Trough Collector for Concentrated Solar Power," Energies, MDPI, vol. 14(1), pages 1-26, January.
    20. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:134:y:2020:i:c:s1364032120306195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.