IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i5p591-d96908.html
   My bibliography  Save this article

In Situ Stress Measurement Techniques on Li-ion Battery Electrodes: A Review

Author

Listed:
  • Ximing Cheng

    (Collaborative Innovation Center for Electric Vehicles in Beijing, National Engineering Laboratory for Electric Vehicles, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

  • Michael Pecht

    (Center for Advanced Life Cycle Engineering (CALCE), University of Maryland, College Park, MD 20742, USA)

Abstract

Li-ion batteries experience mechanical stress evolution due in part to Li intercalation into and de-intercalation out of the electrodes, ultimately resulting in performance degradation. In situ measurements of electrode stress can be used to analyze stress generation factors, verify mechanical deformation models, and validate degradation mechanisms. They can also be embedded in Li-ion battery management systems when stress sensors are either implanted in electrodes or attached on battery surfaces. This paper reviews in situ measurement methods of electrode stress based on optical principles, including digital image correlation, curvature measurement, and fiber optical sensors. Their experimental setups, principles, and applications are described and contrasted. This literature review summarizes the current status of these stress measurement methods for battery electrodes and discusses recent developments and trends.

Suggested Citation

  • Ximing Cheng & Michael Pecht, 2017. "In Situ Stress Measurement Techniques on Li-ion Battery Electrodes: A Review," Energies, MDPI, vol. 10(5), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:5:p:591-:d:96908
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/5/591/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/5/591/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
    2. -, 2016. "U.S. Economic Outlook: Quarterly developments," Oficina de la CEPAL en Washington (Estudios e Investigaciones) 40851, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    3. -, 2016. "U.S. Economic Outlook: Quarterly developments," Oficina de la CEPAL en Washington (Estudios e Investigaciones) 40719, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    4. Unknown, 2016. "Grain and Oilseeds outlook for 2016," Agricultural Outlook Forum 2016 236594, United States Department of Agriculture, Agricultural Outlook Forum.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Davide Clerici & Francesco Mocera & Aurelio Somà, 2020. "Analytical Solution for Coupled Diffusion Induced Stress Model for Lithium-Ion Battery," Energies, MDPI, vol. 13(7), pages 1-20, April.
    2. Jiang, Yihui & Xu, Jun & Hou, Wenlong & Mei, Xuesong, 2021. "A stack pressure based equivalent mechanical model of lithium-ion pouch batteries," Energy, Elsevier, vol. 221(C).
    3. Aleksandra Fortier & Max Tsao & Nick D. Williard & Yinjiao Xing & Michael G. Pecht, 2017. "Preliminary Study on Integration of Fiber Optic Bragg Grating Sensors in Li-Ion Batteries and In Situ Strain and Temperature Monitoring of Battery Cells," Energies, MDPI, vol. 10(7), pages 1-11, June.
    4. Francesca Pistorio & Davide Clerici & Francesco Mocera & Aurelio Somà, 2022. "Review on the Experimental Characterization of Fracture in Active Material for Lithium-Ion Batteries," Energies, MDPI, vol. 15(23), pages 1-47, December.
    5. Laura Albero Blanquer & Florencia Marchini & Jan Roman Seitz & Nour Daher & Fanny Bétermier & Jiaqiang Huang & Charlotte Gervillié & Jean-Marie Tarascon, 2022. "Optical sensors for operando stress monitoring in lithium-based batteries containing solid-state or liquid electrolytes," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Davide Clerici & Francesco Mocera & Aurelio Somà, 2021. "Experimental Characterization of Lithium-Ion Cell Strain Using Laser Sensors," Energies, MDPI, vol. 14(19), pages 1-17, October.
    7. Anyu Cheng & Yi Xin & Hang Wu & Lixin Yang & Banghuai Deng, 2023. "A Review of Sensor Applications in Electric Vehicle Thermal Management Systems," Energies, MDPI, vol. 16(13), pages 1-29, July.
    8. Lysander De Sutter & Gert Berckmans & Mario Marinaro & Jelle Smekens & Yousef Firouz & Margret Wohlfahrt-Mehrens & Joeri Van Mierlo & Noshin Omar, 2018. "Comprehensive Aging Analysis of Volumetric Constrained Lithium-Ion Pouch Cells with High Concentration Silicon-Alloy Anodes," Energies, MDPI, vol. 11(11), pages 1-21, October.
    9. Han, Gaoce & Yan, Jize & Guo, Zhen & Greenwood, David & Marco, James & Yu, Yifei, 2021. "A review on various optical fibre sensing methods for batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felipe Cerdas & Paul Titscher & Nicolas Bognar & Richard Schmuch & Martin Winter & Arno Kwade & Christoph Herrmann, 2018. "Exploring the Effect of Increased Energy Density on the Environmental Impacts of Traction Batteries: A Comparison of Energy Optimized Lithium-Ion and Lithium-Sulfur Batteries for Mobility Applications," Energies, MDPI, vol. 11(1), pages 1-20, January.
    2. Thomas Url, 2017. "Private Insurance Premium Income Declined in 2016," WIFO Bulletin, WIFO, vol. 22(14), pages 133-142, September.
    3. Budi, Rizki Firmansyah Setya & Sarjiya, & Hadi, Sasongko Pramono, 2021. "Multi-level game theory model for partially deregulated generation expansion planning," Energy, Elsevier, vol. 237(C).
    4. Elem Eyrice, Tepeciklioğlu & M. Evren, Tok & Syed Abul, Basher, 2017. "Turkish and BRICS Engagement in Africa: Between humanitarian and economic interests," MPRA Paper 77549, University Library of Munich, Germany.
    5. Hussaini, 2020. "The Historical Sources of Nationalism in the Contemporary China," Technium Social Sciences Journal, Technium Science, vol. 13(1), pages 536-550, November.
    6. repec:thr:techub:10013:y:2020:i:1:p:536-550 is not listed on IDEAS
    7. Leszek Sieczko & Anna Justyna Parzonko & Anna Sieczko, 2021. "Trust in Collective Entrepreneurship in the Context of the Development of Rural Areas in Poland," Agriculture, MDPI, vol. 11(11), pages 1-26, November.
    8. Marco Torresi & Francesco Fornarelli & Bernardo Fortunato & Sergio Mario Camporeale & Alessandro Saponaro, 2017. "Assessment against Experiments of Devolatilization and Char Burnout Models for the Simulation of an Aerodynamically Staged Swirled Low-NO x Pulverized Coal Burner," Energies, MDPI, vol. 10(1), pages 1-24, January.
    9. Richard Beaumont & Iain Masters & Abhishek Das & Steve Lucas & Arunn Thanikachalam & David Williams, 2021. "Methodology for Developing a Macro Finite Element Model of Lithium-Ion Pouch Cells for Predicting Mechanical Behaviour under Multiple Loading Conditions," Energies, MDPI, vol. 14(7), pages 1-21, March.
    10. Josef Baumgartner & Sandra Bilek-Steindl & Serguei Kaniovski & Hans Pitlik, 2016. "Moderate Economic Growth – Unemployment Remaining High. Medium-term Forecast for the Austrian Economy Until 2021," WIFO Bulletin, WIFO, vol. 21(19), pages 185-201, December.
    11. Nguyen, Cuong & Tran, Tuyen & Vu, Huong, 2021. "The Long-Term Effects of War on Foreign Direct Investment and Economic Development: Evidence from Vietnam," MPRA Paper 111891, University Library of Munich, Germany.
    12. Jia, Zhuangzhuang & Song, Laifeng & Mei, Wenxin & Yu, Yin & Meng, Xiangdong & Jin, Kaiqiang & Sun, Jinhua & Wang, Qingsong, 2022. "The preload force effect on the thermal runaway and venting behaviors of large-format prismatic LiFePO4 batteries," Applied Energy, Elsevier, vol. 327(C).
    13. Liu, Lishuo & Feng, Xuning & Zhang, Mingxuan & Lu, Languang & Han, Xuebing & He, Xiangming & Ouyang, Minggao, 2020. "Comparative study on substitute triggering approaches for internal short circuit in lithium-ion batteries," Applied Energy, Elsevier, vol. 259(C).
    14. Chen, Haosen & Fan, Jinbao & Zhang, Mingliang & Feng, Xiaolong & Zhong, Ximing & He, Jianchao & Ai, Shigang, 2023. "Mechanism of inhomogeneous deformation and equal-stiffness design of large-format prismatic lithium-ion batteries," Applied Energy, Elsevier, vol. 332(C).
    15. Tomasz Legiedz, 2020. "Economic policy for development and the new institutional economics," Catallaxy, Institute of Economic Research, vol. 5(2), pages 61-73, December.
    16. Sanjay Kalra, 2016. "6½ Decades of Global Trade and Income: “New Normal” or “Back to Normal” after GTC and GFC?," IMF Working Papers 2016/139, International Monetary Fund.
    17. Liu, Mengmeng & Xu, Jun & Jiang, Yihui & Mei, Xuesong, 2023. "Multi-dimensional features based data-driven state of charge estimation method for LiFePO4 batteries," Energy, Elsevier, vol. 274(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:5:p:591-:d:96908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.