IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i11p1850-d118578.html
   My bibliography  Save this article

Effect of Charcoal and Kraft-Lignin Addition on Coke Compression Strength and Reactivity

Author

Listed:
  • Hannu Suopajärvi

    (Process Metallurgy Research Unit, University of Oulu, P.O. Box 4300, FI-90014 Oulu, Finland)

  • Essi Dahl

    (Process Metallurgy Research Unit, University of Oulu, P.O. Box 4300, FI-90014 Oulu, Finland)

  • Antti Kemppainen

    (Process Metallurgy Research Unit, University of Oulu, P.O. Box 4300, FI-90014 Oulu, Finland)

  • Stanislav Gornostayev

    (Process Metallurgy Research Unit, University of Oulu, P.O. Box 4300, FI-90014 Oulu, Finland)

  • Aki Koskela

    (Process Metallurgy Research Unit, University of Oulu, P.O. Box 4300, FI-90014 Oulu, Finland)

  • Timo Fabritius

    (Process Metallurgy Research Unit, University of Oulu, P.O. Box 4300, FI-90014 Oulu, Finland)

Abstract

The aim of this research was to investigate the effects of charcoal and Kraft-lignin additions on the structure, cold compression strength, and reactivity of bio-cokes produced at the laboratory scale. Bio-cokes were prepared by adding charcoal and Kraft-lignin (2.5, 5.0, 7.5, and 10.0 wt %) to medium-volatile coal and coking the mixture with controlled heating rate (3.5 °C/min) up to 1200 °C. In addition, four particle sizes of charcoal were added with a 5 wt % addition rate to investigate the effect of particle size on the compression strength and reactivity. Thermogravimetric analysis was used to evaluate the pyrolysis behavior of coal and biomasses. Optical microscopy was used to investigate the interaction of coal and biomass components. It was found that by controlling the amount of charcoal and Kraft-lignin in the coal blend, the compression strength of the bio-cokes remains at an acceptable level compared to the reference coke without biomass addition. The cold compression strength of the charcoal bio-cokes was higher compared to Kraft-lignin bio-cokes. The reactivity of the bio-cokes with charcoal addition was markedly higher compared to reference coke and Kraft-lignin bio-cokes, mainly due to the differences in the physical properties of the parental biomass. By increasing the bulk density of the coal/biomass charge, the cold compression strength of the bio-cokes can be improved substantially.

Suggested Citation

  • Hannu Suopajärvi & Essi Dahl & Antti Kemppainen & Stanislav Gornostayev & Aki Koskela & Timo Fabritius, 2017. "Effect of Charcoal and Kraft-Lignin Addition on Coke Compression Strength and Reactivity," Energies, MDPI, vol. 10(11), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1850-:d:118578
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/11/1850/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/11/1850/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Raphael Slade & Ausilio Bauen & Robert Gross, 2014. "Global bioenergy resources," Nature Climate Change, Nature, vol. 4(2), pages 99-105, February.
    2. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    2. Aki Koskela & Hannu Suopajärvi & Olli Mattila & Juha Uusitalo & Timo Fabritius, 2019. "Lignin from Bioethanol Production as a Part of a Raw Material Blend of a Metallurgical Coke," Energies, MDPI, vol. 12(8), pages 1-19, April.
    3. Surup, Gerrit & Vehus, Tore & Eidem, Per-Anders & Trubetskaya, Anna & Nielsen, Henrik Kofoed, 2019. "Characterization of renewable reductants and charcoal-based pellets for the use in ferroalloy industries," Energy, Elsevier, vol. 167(C), pages 337-345.
    4. Michał Rejdak & Małgorzata Wojtaszek-Kalaitzidi & Grzegorz Gałko & Bartosz Mertas & Tomasz Radko & Robert Baron & Michał Książek & Sten Yngve Larsen & Marcin Sajdak & Stavros Kalaitzidis, 2022. "A Study on Bio-Coke Production—The Influence of Bio-Components Addition on Coke-Making Blend Properties," Energies, MDPI, vol. 15(18), pages 1-27, September.
    5. Toloue Farrokh, Najibeh & Suopajärvi, Hannu & Mattila, Olli & Umeki, Kentaro & Phounglamcheik, Aekjuthon & Romar, Henrik & Sulasalmi, Petri & Fabritius, Timo, 2018. "Slow pyrolysis of by-product lignin from wood-based ethanol production– A detailed analysis of the produced chars," Energy, Elsevier, vol. 164(C), pages 112-123.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    2. Nariê Rinke Dias de Souza & Bruno Colling Klein & Mateus Ferreira Chagas & Otavio Cavalett & Antonio Bonomi, 2021. "Towards Comparable Carbon Credits: Harmonization of LCA Models of Cellulosic Biofuels," Sustainability, MDPI, vol. 13(18), pages 1-17, September.
    3. Kai Wang & Jianliang Zhang & Shengli Wu & Jianlong Wu & Kun Xu & Jiawen Liu & Xiaojun Ning & Guangwei Wang, 2022. "Feasibility Analysis of Biomass Hydrochar Blended Coal Injection for Blast Furnace," Sustainability, MDPI, vol. 14(17), pages 1-17, August.
    4. Skoczkowski, Tadeusz & Verdolini, Elena & Bielecki, Sławomir & Kochański, Max & Korczak, Katarzyna & Węglarz, Arkadiusz, 2020. "Technology innovation system analysis of decarbonisation options in the EU steel industry," Energy, Elsevier, vol. 212(C).
    5. Yang, F. & Meerman, J.C. & Faaij, A.P.C., 2021. "Carbon capture and biomass in industry: A techno-economic analysis and comparison of negative emission options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    6. Uribe-Soto, Wilmar & Portha, Jean-François & Commenge, Jean-Marc & Falk, Laurent, 2017. "A review of thermochemical processes and technologies to use steelworks off-gases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 809-823.
    7. Kang, Yating & Yang, Qing & Bartocci, Pietro & Wei, Hongjian & Liu, Sylvia Shuhan & Wu, Zhujuan & Zhou, Hewen & Yang, Haiping & Fantozzi, Francesco & Chen, Hanping, 2020. "Bioenergy in China: Evaluation of domestic biomass resources and the associated greenhouse gas mitigation potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    8. Matamala, Yolanda & Flores, Francisco & Arriet, Andrea & Khan, Zarrar & Feijoo, Felipe, 2023. "Probabilistic feasibility assessment of sequestration reliance for climate targets," Energy, Elsevier, vol. 272(C).
    9. Fanny Groundstroem & Sirkku Juhola, 2021. "Using systems thinking and causal loop diagrams to identify cascading climate change impacts on bioenergy supply systems," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(7), pages 1-48, October.
    10. Sarafraz, M.M. & Jafarian, M. & Arjomandi, M. & Nathan, G.J., 2017. "Potential use of liquid metal oxides for chemical looping gasification: A thermodynamic assessment," Applied Energy, Elsevier, vol. 195(C), pages 702-712.
    11. Van Meerbeek, Koenraad & Muys, Bart & Hermy, Martin, 2019. "Lignocellulosic biomass for bioenergy beyond intensive cropland and forests," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 139-149.
    12. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2014. "Bioreducer use in Finnish blast furnace ironmaking – Analysis of CO2 emission reduction potential and mitigation cost," Applied Energy, Elsevier, vol. 124(C), pages 82-93.
    13. Mansor, Adila Maisyarah & Theo, Wai Lip & Lim, Jeng Shiun & Ani, Farid Nasir & Hashim, Haslenda & Ho, Wai Shin, 2018. "Potential commercialisation of biocoke production in Malaysia—A best evidence review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 636-649.
    14. Abdul Quader, M. & Ahmed, Shamsuddin & Dawal, S.Z. & Nukman, Y., 2016. "Present needs, recent progress and future trends of energy-efficient Ultra-Low Carbon Dioxide (CO2) Steelmaking (ULCOS) program," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 537-549.
    15. Mousa, Elsayed & Wang, Chuan & Riesbeck, Johan & Larsson, Mikael, 2016. "Biomass applications in iron and steel industry: An overview of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1247-1266.
    16. Correa, Diego F. & Beyer, Hawthorne L. & Fargione, Joseph E. & Hill, Jason D. & Possingham, Hugh P. & Thomas-Hall, Skye R. & Schenk, Peer M., 2019. "Towards the implementation of sustainable biofuel production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 250-263.
    17. Harsha Mysore Prabhakara & Eddy A. Bramer & Gerrit Brem, 2021. "Biomass Fast Pyrolysis Vapor Upgrading over γ-Alumina, Hydrotalcite, Dolomite and Effect of Na 2 CO 3 Loading: A Pyro Probe GCMS Study," Energies, MDPI, vol. 14(17), pages 1-17, August.
    18. Avellán, Tamara & Gremillion, Paul, 2019. "Constructed wetlands for resource recovery in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 42-57.
    19. Yue, Wencong & Su, Meirong & Cai, Yanpeng & Rong, Qiangqiang & Tan, Zhenkun, 2021. "Reactive nitrogen loss from livestock-based food and biofuel production systems considering climate change and dietary transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    20. Trishan Deb Abhi & Omid Norouzi & Kevin Macdermid-Watts & Mohammad Heidari & Syeda Tasnim & Animesh Dutta, 2021. "Miscanthus to Biocarbon for Canadian Iron and Steel Industries: An Innovative Approach," Energies, MDPI, vol. 14(15), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1850-:d:118578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.