IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i8p1533-d225252.html
   My bibliography  Save this article

Lignin from Bioethanol Production as a Part of a Raw Material Blend of a Metallurgical Coke

Author

Listed:
  • Aki Koskela

    (Process Metallurgy Research Unit, University of Oulu, P.O. Box 4300, FI-90014 Oulu, Finland)

  • Hannu Suopajärvi

    (Process Metallurgy Research Unit, University of Oulu, P.O. Box 4300, FI-90014 Oulu, Finland)

  • Olli Mattila

    (Process Metallurgy Research Unit, University of Oulu, P.O. Box 4300, FI-90014 Oulu, Finland)

  • Juha Uusitalo

    (Process Metallurgy Research Unit, University of Oulu, P.O. Box 4300, FI-90014 Oulu, Finland)

  • Timo Fabritius

    (Process Metallurgy Research Unit, University of Oulu, P.O. Box 4300, FI-90014 Oulu, Finland)

Abstract

Replacement of part of the coal in the coking blend with lignin would be an attractive solution to reduce greenhouse gas emissions from blast furnace (BF) iron making and for obtaining additional value for lignin utilization. In this research, both non-pyrolyzed and pyrolyzed lignin was used in a powdered form in a coking blend for replacing 5-, 10- and 15 m-% of coal in the raw material bulk. Graphite powder was used as a comparative replacement material for lignin with corresponding replacement ratios. Thermogravimetric analysis was performed for all the raw materials to obtaining valuable data about the raw material behavior in the coking process. In addition, chemical analysis was performed for dried lignin, pyrolyzed lignin and coal that were used in the experiments. Produced bio cokes were tested in a compression strength experiment, in reactivity tests in a simulating blast furnace shaft gas profile and temperature. Also, an image analysis of the porosity and pore shapes was performed with a custom made MatLab-based image analysis software. The tests revealed that the pyrolysis of lignin before the coking process has an increasing impact on the bio coke strength, while the reactivity of the bio-cokes did not significantly change. However, after certain level of lignin addition the effect of lignin pyrolysis before the coking lost its significance. According to results of this research, the structure of bio cokes changes significantly when replacement of coal with lignin in the raw material bulk is at a level of 10 m-% or more, causing less uniform structure thus leading to a less strong structure for bio cokes.

Suggested Citation

  • Aki Koskela & Hannu Suopajärvi & Olli Mattila & Juha Uusitalo & Timo Fabritius, 2019. "Lignin from Bioethanol Production as a Part of a Raw Material Blend of a Metallurgical Coke," Energies, MDPI, vol. 12(8), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1533-:d:225252
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/8/1533/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/8/1533/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hannu Suopajärvi & Essi Dahl & Antti Kemppainen & Stanislav Gornostayev & Aki Koskela & Timo Fabritius, 2017. "Effect of Charcoal and Kraft-Lignin Addition on Coke Compression Strength and Reactivity," Energies, MDPI, vol. 10(11), pages 1-15, November.
    2. Robert A. Berner, 2003. "The long-term carbon cycle, fossil fuels and atmospheric composition," Nature, Nature, vol. 426(6964), pages 323-326, November.
    3. Toloue Farrokh, Najibeh & Suopajärvi, Hannu & Mattila, Olli & Umeki, Kentaro & Phounglamcheik, Aekjuthon & Romar, Henrik & Sulasalmi, Petri & Fabritius, Timo, 2018. "Slow pyrolysis of by-product lignin from wood-based ethanol production– A detailed analysis of the produced chars," Energy, Elsevier, vol. 164(C), pages 112-123.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Kaiyue & Han, Hengda & Hu, Song & Ren, Qiangqiang & Su, Sheng & Wang, Yi & Jiang, Long & Xu, Jun & Li, Hanjian & Tong, Yuxing & Xiang, Jun, 2023. "Upgrading biomass waste to bio-coking coal by pressurized torrefaction: Synergistic effect between corncob and lignin," Energy, Elsevier, vol. 267(C).
    2. Michał Rejdak & Małgorzata Wojtaszek-Kalaitzidi & Grzegorz Gałko & Bartosz Mertas & Tomasz Radko & Robert Baron & Michał Książek & Sten Yngve Larsen & Marcin Sajdak & Stavros Kalaitzidis, 2022. "A Study on Bio-Coke Production—The Influence of Bio-Components Addition on Coke-Making Blend Properties," Energies, MDPI, vol. 15(18), pages 1-27, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    2. Valero, Antonio & Agudelo, Andrés & Valero, Alicia, 2011. "The crepuscular planet. A model for the exhausted atmosphere and hydrosphere," Energy, Elsevier, vol. 36(6), pages 3745-3753.
    3. Stephen G. Wiedemann & Quan V. Nguyen & Simon J. Clarke, 2022. "Using LCA and Circularity Indicators to Measure the Sustainability of Textiles—Examples of Renewable and Non-Renewable Fibres," Sustainability, MDPI, vol. 14(24), pages 1-14, December.
    4. Hermann, Weston A., 2006. "Quantifying global exergy resources," Energy, Elsevier, vol. 31(12), pages 1685-1702.
    5. Guo, Fuxing & Wang, Yanping & Zhu, Haoyong & Zhang, Chuangye & Sun, Haowei & Fang, Zhuling & Yang, Jing & Zhang, Linsen & Mu, Yan & Man, Yu Bon & Wu, Fuyong, 2023. "Crop productivity and soil inorganic carbon change mediated by enhanced rock weathering in farmland: A comparative field analysis of multi-agroclimatic regions in central China," Agricultural Systems, Elsevier, vol. 210(C).
    6. Toloue Farrokh, Najibeh & Suopajärvi, Hannu & Mattila, Olli & Umeki, Kentaro & Phounglamcheik, Aekjuthon & Romar, Henrik & Sulasalmi, Petri & Fabritius, Timo, 2018. "Slow pyrolysis of by-product lignin from wood-based ethanol production– A detailed analysis of the produced chars," Energy, Elsevier, vol. 164(C), pages 112-123.
    7. Michał Rejdak & Małgorzata Wojtaszek-Kalaitzidi & Grzegorz Gałko & Bartosz Mertas & Tomasz Radko & Robert Baron & Michał Książek & Sten Yngve Larsen & Marcin Sajdak & Stavros Kalaitzidis, 2022. "A Study on Bio-Coke Production—The Influence of Bio-Components Addition on Coke-Making Blend Properties," Energies, MDPI, vol. 15(18), pages 1-27, September.
    8. Alexandru Milcu & Martin Lukac & Phil Ineson, 2012. "The role of closed ecological systems in carbon cycle modelling," Climatic Change, Springer, vol. 112(3), pages 709-716, June.
    9. Surup, Gerrit & Vehus, Tore & Eidem, Per-Anders & Trubetskaya, Anna & Nielsen, Henrik Kofoed, 2019. "Characterization of renewable reductants and charcoal-based pellets for the use in ferroalloy industries," Energy, Elsevier, vol. 167(C), pages 337-345.
    10. Caleb Wright & Roger Sathre & Shashi Buluswar, 2020. "The global challenge of clean cooking systems," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(6), pages 1219-1240, December.
    11. Korshunov, Alexey & Kichatov, Boris & Melnikova, Ksenia & Gubernov, Vladimir & Yakovenko, Ivan & Kiverin, Alexey & Golubkov, Alexandr, 2019. "Pyrolysis characteristics of biomass torrefied in a quiescent mineral layer," Energy, Elsevier, vol. 187(C).
    12. Y.-H. Percival Zhang & Jonathan R. Mielenz, 2011. "Renewable Hydrogen Carrier — Carbohydrate: Constructing the Carbon-Neutral Carbohydrate Economy," Energies, MDPI, vol. 4(2), pages 1-22, January.
    13. Ilaria Perissi & Alessandro Lavacchi & Ugo Bardi, 2021. "The Role of Energy Return on Energy Invested (EROEI) in Complex Adaptive Systems," Energies, MDPI, vol. 14(24), pages 1-15, December.
    14. Virendra Bahadur Singh & A. K. Keshari & AL. Ramanathan, 2020. "Major ion chemistry and atmospheric CO2 consumption deduced from the Batal glacier, Lahaul–Spiti valley, Western Himalaya, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(7), pages 6585-6603, October.
    15. Lewis E. Gilbert, 2004. "Strategies for Developing Carbon Sequestration Portfolios," Energy & Environment, , vol. 15(5), pages 825-835, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1533-:d:225252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.