IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v195y2017icp702-712.html
   My bibliography  Save this article

Potential use of liquid metal oxides for chemical looping gasification: A thermodynamic assessment

Author

Listed:
  • Sarafraz, M.M.
  • Jafarian, M.
  • Arjomandi, M.
  • Nathan, G.J.

Abstract

A new concept for syngas production is proposed in which a liquid metal oxide (here copper oxide) is implemented as an oxygen carrier for chemical looping gasification. The proposed system consists of two interconnected bubble reactors as the fuel and air reactors, through which a liquid metal oxide is circulated to be successively reduced and oxidised providing the required heat and oxygen for the gasification reaction. The proposed system offers a potential process to avoid challenges such as agglomeration and sintering that are typically associated with the solid metal oxides that have previously been proposed for chemical looping gasification. Thermochemical equilibrium models are presented that show acceptable agreement with the available data. The model is then used to estimate that the carbon conversion of feedstock is up to 84.6% for gasification and 100% for combustion with the proposed concept. In addition, the mole fraction of gaseous copper oxide in the outlet stream from the air reactor is estimated to be 10−11, which implies that no further process is required to separate the evaporated copper oxide from the syngas.

Suggested Citation

  • Sarafraz, M.M. & Jafarian, M. & Arjomandi, M. & Nathan, G.J., 2017. "Potential use of liquid metal oxides for chemical looping gasification: A thermodynamic assessment," Applied Energy, Elsevier, vol. 195(C), pages 702-712.
  • Handle: RePEc:eee:appene:v:195:y:2017:i:c:p:702-712
    DOI: 10.1016/j.apenergy.2017.03.106
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191730346X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.03.106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    2. Chan, Fan Liang & Tanksale, Akshat, 2014. "Review of recent developments in Ni-based catalysts for biomass gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 428-438.
    3. Jafarian, Mehdi & Arjomandi, Maziar & Nathan, Graham J., 2013. "A hybrid solar and chemical looping combustion system for solar thermal energy storage," Applied Energy, Elsevier, vol. 103(C), pages 671-678.
    4. Jafarian, Mehdi & Arjomandi, Maziar & Nathan, Graham J., 2014. "A hybrid solar chemical looping combustion system with a high solar share," Applied Energy, Elsevier, vol. 126(C), pages 69-77.
    5. Patra, Tapas Kumar & Sheth, Pratik N., 2015. "Biomass gasification models for downdraft gasifier: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 583-593.
    6. Siriwardane, Ranjani & Riley, Jarrett & Tian, Hanjing & Richards, George, 2016. "Chemical looping coal gasification with calcium ferrite and barium ferrite via solid–solid reactions," Applied Energy, Elsevier, vol. 165(C), pages 952-966.
    7. Ping Wang & Nicholas Means & Dushyant Shekhawat & David Berry & Mehrdad Massoudi, 2015. "Chemical-Looping Combustion and Gasification of Coals and Oxygen Carrier Development: A Brief Review," Energies, MDPI, vol. 8(10), pages 1-31, September.
    8. Martínez, Juan Daniel & Mahkamov, Khamid & Andrade, Rubenildo V. & Silva Lora, Electo E., 2012. "Syngas production in downdraft biomass gasifiers and its application using internal combustion engines," Renewable Energy, Elsevier, vol. 38(1), pages 1-9.
    9. Barati, M. & Esfahani, S. & Utigard, T.A., 2011. "Energy recovery from high temperature slags," Energy, Elsevier, vol. 36(9), pages 5440-5449.
    10. Jafarian, Mehdi & Arjomandi, Maziar & Nathan, Graham J., 2014. "The energetic performance of a novel hybrid solar thermal & chemical looping combustion plant," Applied Energy, Elsevier, vol. 132(C), pages 74-85.
    11. Tong, Andrew & Bayham, Samuel & Kathe, Mandar V. & Zeng, Liang & Luo, Siwei & Fan, Liang-Shih, 2014. "Iron-based syngas chemical looping process and coal-direct chemical looping process development at Ohio State University," Applied Energy, Elsevier, vol. 113(C), pages 1836-1845.
    12. Kirubakaran, V. & Sivaramakrishnan, V. & Nalini, R. & Sekar, T. & Premalatha, M. & Subramanian, P., 2009. "A review on gasification of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 179-186, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rahman, MD Mashiur & Henriksen, Ulrik Birk & Ahrenfeldt, Jesper & Arnavat, Maria Puig, 2020. "Design, construction and operation of a low-tar biomass (LTB) gasifier for power applications," Energy, Elsevier, vol. 204(C).
    2. Liu, Zhibin & Zhao, Chuankai & Cai, Longhao & Long, Xinman, 2022. "Steady state modelling of steam-gasification of biomass for H2-rich syngas production," Energy, Elsevier, vol. 238(PA).
    3. Xu, Dikai & Zhang, Yitao & Hsieh, Tien-Lin & Guo, Mengqing & Qin, Lang & Chung, Cheng & Fan, Liang-Shih & Tong, Andrew, 2018. "A novel chemical looping partial oxidation process for thermochemical conversion of biomass to syngas," Applied Energy, Elsevier, vol. 222(C), pages 119-131.
    4. Nguyen, Nhut M. & Alobaid, Falah & Epple, Bernd, 2021. "Chemical looping gasification of torrefied woodchips in a bubbling fluidized bed test rig using iron-based oxygen carriers," Renewable Energy, Elsevier, vol. 172(C), pages 34-45.
    5. Siriwardane, Ranjani & Riley, Jarrett & Atallah, Chris, 2022. "CO2 utilization potential of a novel calcium ferrite based looping process fueled with coal: Experimental evaluation of various coal feedstocks and thermodynamic integrated process analysis," Applied Energy, Elsevier, vol. 323(C).
    6. Zeng, Jimin & Xiao, Rui & Zhang, Shuai & Zhang, Huiyan & Zeng, Dewang & Qiu, Yu & Ma, Zhong, 2018. "Identifying iron-based oxygen carrier reduction during biomass chemical looping gasification on a thermogravimetric fixed-bed reactor," Applied Energy, Elsevier, vol. 229(C), pages 404-412.
    7. Odi Fawwaz Alrebei & Philip Bowen & Agustin Valera Medina, 2020. "Parametric Study of Various Thermodynamic Cycles for the Use of Unconventional Blends," Energies, MDPI, vol. 13(18), pages 1-16, September.
    8. Li, Jun & Xie, Yingpu & Zeng, Kuo & Flamant, Gilles & Yang, Haiping & Yang, Xinyi & Zhong, Dian & Du, Zhenyi & Chen, Hanping, 2020. "Biomass gasification in molten salt for syngas production," Energy, Elsevier, vol. 210(C).
    9. Yao, Xiwen & Zhao, Zhicheng & Li, Jishuo & Zhang, Bohan & Zhou, Haodong & Xu, Kaili, 2020. "Experimental investigation of physicochemical and slagging characteristics of inorganic constituents in ash residues from gasification of different herbaceous biomass," Energy, Elsevier, vol. 198(C).
    10. Laixing Luo & Xing Zheng & Jianye Wang & Wu Qin & Xianbin Xiao & Zongming Zheng, 2021. "Catalyzed Ethanol Chemical Looping Gasification Mechanism on the Perfect and Reduced Fe 2 O 3 Surfaces," Energies, MDPI, vol. 14(6), pages 1-15, March.
    11. Tian, Zhe & Arasteh, Hossein & Parsian, Amir & Karimipour, Arash & Safaei, Mohammad Reza & Nguyen, Truong Khang, 2019. "Estimate the shear rate & apparent viscosity of multi-phased non-Newtonian hybrid nanofluids via new developed Support Vector Machine method coupled with sensitivity analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. M. Sarafraz & Mohammad Reza Safaei & M. Jafarian & Marjan Goodarzi & M. Arjomandi, 2019. "High Quality Syngas Production with Supercritical Biomass Gasification Integrated with a Water–Gas Shift Reactor," Energies, MDPI, vol. 12(13), pages 1-14, July.
    2. Jafarian, Mehdi & Arjomandi, Maziar & Nathan, Graham J., 2017. "Thermodynamic potential of molten copper oxide for high temperature solar energy storage and oxygen production," Applied Energy, Elsevier, vol. 201(C), pages 69-83.
    3. Elsner, Witold & Wysocki, Marian & Niegodajew, Paweł & Borecki, Roman, 2017. "Experimental and economic study of small-scale CHP installation equipped with downdraft gasifier and internal combustion engine," Applied Energy, Elsevier, vol. 202(C), pages 213-227.
    4. Samiran, Nor Afzanizam & Jaafar, Mohammad Nazri Mohd & Ng, Jo-Han & Lam, Su Shiung & Chong, Cheng Tung, 2016. "Progress in biomass gasification technique – With focus on Malaysian palm biomass for syngas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1047-1062.
    5. Liu, Yinan & Deng, Shuai & Zhao, Ruikai & He, Junnan & Zhao, Li, 2017. "Energy-saving pathway exploration of CCS integrated with solar energy: A review of innovative concepts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 652-669.
    6. Przybyla, Grzegorz & Szlek, Andrzej & Haggith, Dale & Sobiesiak, Andrzej, 2016. "Fuelling of spark ignition and homogenous charge compression ignition engines with low calorific value producer gas," Energy, Elsevier, vol. 116(P3), pages 1464-1478.
    7. Zahida Aslam & Hu Li & James Hammerton & Gordon Andrews & Andrew Ross & Jon C. Lovett, 2021. "Increasing Access to Electricity: An Assessment of the Energy and Power Generation Potential from Biomass Waste Residues in Tanzania," Energies, MDPI, vol. 14(6), pages 1-22, March.
    8. Silakhori, Mahyar & Jafarian, Mehdi & Arjomandi, Maziar & Nathan, Graham J., 2019. "The energetic performance of a liquid chemical looping cycle with solar thermal energy storage," Energy, Elsevier, vol. 170(C), pages 93-101.
    9. Ismail, Tamer M. & Ramos, Ana & Monteiro, Eliseu & El-Salam, M. Abd & Rouboa, Abel, 2020. "Parametric studies in the gasification agent and fluidization velocity during oxygen-enriched gasification of biomass in a pilot-scale fluidized bed: Experimental and numerical assessment," Renewable Energy, Elsevier, vol. 147(P1), pages 2429-2439.
    10. Jafarian, Mehdi & Arjomandi, Maziar & Nathan, Graham J., 2014. "The energetic performance of a novel hybrid solar thermal & chemical looping combustion plant," Applied Energy, Elsevier, vol. 132(C), pages 74-85.
    11. Sun, Yongqi & Seetharaman, Seshadri & Zhang, Zuotai, 2018. "Integrating biomass pyrolysis with waste heat recovery from hot slags via extending the C-loops: Product yields and roles of slags," Energy, Elsevier, vol. 149(C), pages 792-803.
    12. Jiang, Qiongqiong & Zhang, Hao & Deng, Ya'nan & Kang, Qilan & Hong, Hui & Jin, Hongguang, 2018. "Properties and reactivity of LaCuxNi1−xO3 perovskites in chemical-looping combustion for mid-temperature solar-thermal energy storage," Applied Energy, Elsevier, vol. 228(C), pages 1506-1514.
    13. Patra, Tapas Kumar & Nimisha, K.R. & Sheth, Pratik N., 2016. "A comprehensive dynamic model for downdraft gasifier using heat and mass transport coupled with reaction kinetics," Energy, Elsevier, vol. 116(P1), pages 1230-1242.
    14. Ndindeng, Sali Atanga & Wopereis, Marco & Sanyang, Sidi & Futakuchi, Koichi, 2019. "Evaluation of fan-assisted rice husk fuelled gasifier cookstoves for application in sub-Sahara Africa," Renewable Energy, Elsevier, vol. 139(C), pages 924-935.
    15. Inayat, Muddasser & Sulaiman, Shaharin A. & Kurnia, Jundika Candra & Shahbaz, Muhammad, 2019. "Effect of various blended fuels on syngas quality and performance in catalytic co-gasification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 252-267.
    16. Inayat, Abrar & Raza, Mohsin, 2019. "District cooling system via renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 360-373.
    17. Salem, Ahmed M. & Elsherbiny, Khaled, 2022. "Innovative concept for the effect of changing gasifying medium and injection points on syngas quality: Towards higher H2 production, and Free-CO2 emissions," Energy, Elsevier, vol. 261(PB).
    18. Ogidiama, Oghare Victor & Abu-Zahra, Mohammad R.M. & Shamim, Tariq, 2018. "Techno-economic analysis of a poly-generation solar-assisted chemical looping combustion power plant," Applied Energy, Elsevier, vol. 228(C), pages 724-735.
    19. Huang, Liang & Tang, Mingchen & Fan, Maohong & Cheng, Hansong, 2015. "Density functional theory study on the reaction between hematite and methane during chemical looping process," Applied Energy, Elsevier, vol. 159(C), pages 132-144.
    20. Ahmed Al-Nini & Hamdan Haji Ya & Najib Al-Mahbashi & Hilmi Hussin, 2023. "A Review on Green Cooling: Exploring the Benefits of Sustainable Energy-Powered District Cooling with Thermal Energy Storage," Sustainability, MDPI, vol. 15(6), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:195:y:2017:i:c:p:702-712. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.