IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i10p1499-d113433.html
   My bibliography  Save this article

Comparative Study on Uni- and Bi-Directional Fluid Structure Coupling of Wind Turbine Blades

Author

Listed:
  • Mesfin Belayneh Ageze

    (School of Mechanical and Electrical Engineering, Wuhan University of Technology, Wuhan 430070, China
    Department of Mechanical Engineering, Woldia University, Woldia, Ethiopia)

  • Yefa Hu

    (School of Mechanical and Electrical Engineering, Wuhan University of Technology, Wuhan 430070, China)

  • Huachun Wu

    (School of Mechanical and Electrical Engineering, Wuhan University of Technology, Wuhan 430070, China)

Abstract

The current trends of wind turbine blade designs are geared towards a longer and slender blade with high flexibility, exhibiting complex aeroelastic loadings and instability issues, including flutter; in this regard, fluid-structure interaction (FSI) plays a significant role. The present article will conduct a comparative study between uni-directional and bi-directional fluid-structural coupling models for a horizontal axis wind turbine. A full-scale, geometric copy of the NREL 5MW blade with simplified material distribution is considered for simulation. Analytical formulations of the governing relations with appropriate approximation are highlighted, including turbulence model, i.e., Shear Stress Transport (SST) k- ω . These analytical relations are implemented using Multiphysics package ANSYS employing Fluent module (Computational Fluid Dynamics (CFD)-based solver) for the fluid domain and Transient Structural module (Finite Element Analysis-based solver) for the structural domain. ANSYS system coupling module also is configured to model the two fluid-structure coupling methods. The rated operational condition of the blade for a full cycle rotation is considered as a comparison domain. In the bi-directional coupling model, the structural deformation alters the angle of attack from the designed values, and by extension the flow pattern along the blade span; furthermore, the tip deflection keeps fluctuating whilst it tends to stabilize in the uni-directional coupling model.

Suggested Citation

  • Mesfin Belayneh Ageze & Yefa Hu & Huachun Wu, 2017. "Comparative Study on Uni- and Bi-Directional Fluid Structure Coupling of Wind Turbine Blades," Energies, MDPI, vol. 10(10), pages 1-21, September.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1499-:d:113433
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/10/1499/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/10/1499/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tabassum-Abbasi, & Premalatha, M. & Abbasi, Tasneem & Abbasi, S.A., 2014. "Wind energy: Increasing deployment, rising environmental concerns," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 270-288.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mujahid Badshah & Saeed Badshah & Kushsairy Kadir, 2018. "Fluid Structure Interaction Modelling of Tidal Turbine Performance and Structural Loads in a Velocity Shear Environment," Energies, MDPI, vol. 11(7), pages 1-13, July.
    2. Kangqi Tian & Li Song & Yongyan Chen & Xiaofeng Jiao & Rui Feng & Rui Tian, 2022. "Stress Coupling Analysis and Failure Damage Evaluation of Wind Turbine Blades during Strong Winds," Energies, MDPI, vol. 15(4), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schumacher, Kim & Yang, Zhuoxiang, 2018. "The determinants of wind energy growth in the United States: Drivers and barriers to state-level development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 1-13.
    2. Jing Xu & Ren Zhang & Yangjun Wang & Hengqian Yan & Quanhong Liu & Yutong Guo & Yongcun Ren, 2022. "A New Framework for Assessment of Offshore Wind Farm Location," Energies, MDPI, vol. 15(18), pages 1-17, September.
    3. Ilkiliç, Cumali & Aydin, Hüseyin, 2015. "Wind power potential and usage in the coastal regions of Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 78-86.
    4. Moravec, David & Barták, Vojtěch & Puš, Vladimír & Wild, Jan, 2018. "Wind turbine impact on near-ground air temperature," Renewable Energy, Elsevier, vol. 123(C), pages 627-633.
    5. Gebreslassie, Mulualem G., 2020. "Public perception and policy implications towards the development of new wind farms in Ethiopia," Energy Policy, Elsevier, vol. 139(C).
    6. Yang, Yaru & Li, Hua & Yao, Jin & Gao, Wenxiang, 2019. "Research on the characteristic parameters and rotor layout principle of dual-rotor horizontal axis wind turbine," Energy, Elsevier, vol. 189(C).
    7. Muhammad Wajahat Hassan & Muhammad Babar Rasheed & Nadeem Javaid & Waseem Nazar & Muhammad Akmal, 2018. "Co-Optimization of Energy and Reserve Capacity Considering Renewable Energy Unit with Uncertainty," Energies, MDPI, vol. 11(10), pages 1-25, October.
    8. Alphan, H., 2021. "Modelling potential visibility of wind turbines: A geospatial approach for planning and impact mitigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    9. Golnary, Farshad & Moradi, Hamed, 2022. "Identification of the dynamics of the drivetrain and estimating its unknown parts in a large scale wind turbine," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 50-69.
    10. Dai, Juchuan & Li, Mimi & Chen, Huanguo & He, Tao & Zhang, Fan, 2022. "Progress and challenges on blade load research of large-scale wind turbines," Renewable Energy, Elsevier, vol. 196(C), pages 482-496.
    11. Marek Angowski & Tomasz Kijek & Marcin Lipowski & Ilona Bondos, 2021. "Factors Affecting the Adoption of Photovoltaic Systems in Rural Areas of Poland," Energies, MDPI, vol. 14(17), pages 1-14, August.
    12. Brown, Jason P. & Coupal, Roger & Hitaj, Claudia & Kelsey, Timothy W. & Krannich, Richard S. & Xiarchos, Irene M., 2017. "New Dynamics in Fossil Fuel and Renewable Energy for Rural America," USDA Miscellaneous 260676, United States Department of Agriculture.
    13. Anshelm, Jonas & Simon, Haikola, 2016. "Power production and environmental opinions – Environmentally motivated resistance to wind power in Sweden," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1545-1555.
    14. Liu, W.Y., 2017. "A review on wind turbine noise mechanism and de-noising techniques," Renewable Energy, Elsevier, vol. 108(C), pages 311-320.
    15. Brown, Jason P. & Coupal, Roger & Hitaj, Claudia & Kelsey, Timothy W. & Krannich, Richard S. & Xiarchos, Irene M., 2017. "New Dynamics in Fossil Fuel and Renewable Energy for Rural America," USDA Miscellaneous 356482, United States Department of Agriculture.
    16. Andreopoulou, Zacharoula & Koliouska, Christiana & Galariotis, Emilios & Zopounidis, Constantin, 2018. "Renewable energy sources: Using PROMETHEE II for ranking websites to support market opportunities," Technological Forecasting and Social Change, Elsevier, vol. 131(C), pages 31-37.
    17. Li, Huan & Alaküla, Mats, 2024. "The optimal capacity expansion planning for the terminals of the logistics company," Applied Energy, Elsevier, vol. 374(C).
    18. Wu, Xiaoni & Hu, Yu & Li, Ye & Yang, Jian & Duan, Lei & Wang, Tongguang & Adcock, Thomas & Jiang, Zhiyu & Gao, Zhen & Lin, Zhiliang & Borthwick, Alistair & Liao, Shijun, 2019. "Foundations of offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 379-393.
    19. Sedlar, D. Karasalihović & Vulin, D. & Krajačić, G. & Jukić, L., 2019. "Offshore gas production infrastructure reutilisation for blue energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 159-174.
    20. Behrang Vand & Aira Hast & Sanaz Bozorg & Zelin Li & Sanna Syri & Shuai Deng, 2019. "Consumers’ Attitudes to Support Green Energy: A Case Study in Shanghai," Energies, MDPI, vol. 12(12), pages 1-20, June.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1499-:d:113433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.