IDEAS home Printed from https://ideas.repec.org/a/gam/jecnmx/v3y2015i2p199-214d47581.html

Plug-in Bandwidth Selection for Kernel Density Estimation with Discrete Data

Author

Listed:
  • Chi-Yang Chu

    (Department of Economics, Finance, and Legal Studies, University of Alabama, Tuscaloosa, AL 35487-0224, USA)

  • Daniel J. Henderson

    (Department of Economics, Finance, and Legal Studies, University of Alabama, Tuscaloosa, AL 35487-0224, USA)

  • Christopher F. Parmeter

    (Department of Economics, University of Miami, Coral Gables, FL 33124-6520, USA)

Abstract

This paper proposes plug-in bandwidth selection for kernel density estimation with discrete data via minimization of mean summed square error. Simulation results show that the plug-in bandwidths perform well, relative to cross-validated bandwidths, in non-uniform designs. We further find that plug-in bandwidths are relatively small. Several empirical examples show that the plug-in bandwidths are typically similar in magnitude to their cross-validated counterparts.

Suggested Citation

  • Chi-Yang Chu & Daniel J. Henderson & Christopher F. Parmeter, 2015. "Plug-in Bandwidth Selection for Kernel Density Estimation with Discrete Data," Econometrics, MDPI, vol. 3(2), pages 1-16, March.
  • Handle: RePEc:gam:jecnmx:v:3:y:2015:i:2:p:199-214:d:47581
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2225-1146/3/2/199/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2225-1146/3/2/199/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Racine, Jeff & Li, Qi, 2004. "Nonparametric estimation of regression functions with both categorical and continuous data," Journal of Econometrics, Elsevier, vol. 119(1), pages 99-130, March.
    2. Li, Qi & Racine, Jeff, 2003. "Nonparametric estimation of distributions with categorical and continuous data," Journal of Multivariate Analysis, Elsevier, vol. 86(2), pages 266-292, August.
    3. Henderson,Daniel J. & Parmeter,Christopher F., 2015. "Applied Nonparametric Econometrics," Cambridge Books, Cambridge University Press, number 9780521279680, January.
    4. Peter Hall & Jeff Racine & Qi Li, 2004. "Cross-Validation and the Estimation of Conditional Probability Densities," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1015-1026, December.
    5. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Regmi, Krishna & J. Henderson, Daniel, 2019. "Labor demand shocks at birth and cognitive achievement during childhood," Economics of Education Review, Elsevier, vol. 73(C).
    2. Daniel J. Henderson & Stefan Sperlich, 2023. "A Complete Framework for Model-Free Difference-in-Differences Estimation," Foundations and Trends(R) in Econometrics, now publishers, vol. 12(3), pages 232-323, October.
    3. Chu, Chi-Yang & Henderson, Daniel J. & Parmeter, Christopher F., 2017. "On discrete Epanechnikov kernel functions," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 79-105.
    4. Xu, Zhongxiang & Chevapatrakul, Thanaset & Li, Xiafei, 2019. "Return asymmetry and the cross section of stock returns," Journal of International Money and Finance, Elsevier, vol. 97(C), pages 93-110.
    5. Stefan Sperlich, 2022. "Comments on: hybrid semiparametric Bayesian networks," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(2), pages 335-339, June.
    6. Byeong U. Park & Léopold Simar & Valentin Zelenyuk, 2020. "Forecasting of recessions via dynamic probit for time series: replication and extension of Kauppi and Saikkonen (2008)," Empirical Economics, Springer, vol. 58(1), pages 379-392, January.
    7. Lynda Harfouche & Smail Adjabi & Nabil Zougab & Benedikt Funke, 2018. "Multiplicative bias correction for discrete kernels," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 253-276, June.
    8. Byeong U. Park & Leopold Simar & Valentin Zelenyuk, 2017. "Revisiting Forecasting of Recessions via Dynamic Probit for Time Series by Kauppi and Saikkonen (2008)," CEPA Working Papers Series WP032017, School of Economics, University of Queensland, Australia.
    9. Regmi, Krishna & Henderson, Daniel J., 2019. "Labor Demand Shocks at Birth and Cognitive Achievement during Childhood," IZA Discussion Papers 12521, Institute of Labor Economics (IZA).
    10. Arnerić Josip, 2020. "Realized density estimation using intraday prices," Croatian Review of Economic, Business and Social Statistics, Sciendo, vol. 6(1), pages 1-9, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Das, Sonali & Racine, Jeffrey S., 2018. "Interactive nonparametric analysis of nonlinear systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 290-301.
    2. Nicholas Kiefer & Jeffrey Racine, 2009. "The smooth Colonel meets the Reverend," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(5), pages 521-533.
    3. Mengistu Assefa Wendimu & Arne Henningsen & Tomasz Gerard Czekaj, 2017. "Incentives and moral hazard: plot level productivity of factory-operated and outgrower-operated sugarcane production in Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 48(5), pages 549-560, September.
    4. Daniel J. Henderson & Alexandre Olbrecht & Solomon W. Polachek, 2006. "Do Former College Athletes Earn More at Work?: A Nonparametric Assessment," Journal of Human Resources, University of Wisconsin Press, vol. 41(3).
    5. Nolwenn Roudaut & Anne Vanhems, 2012. "Explaining firms efficiency in the Ivorian manufacturing sector: a robust nonparametric approach," Journal of Productivity Analysis, Springer, vol. 37(2), pages 155-169, April.
    6. Daniel J. Henderson & Andrew Houtenville & Le Wang, 2017. "The Distribution of Returns to Education for People with Disabilities," Journal of Labor Research, Springer, vol. 38(3), pages 261-282, September.
    7. Jeff Racine & Qi Li & Xi Zhu, 2004. "Kernel Estimation of Multivariate Conditional Distributions," Annals of Economics and Finance, Society for AEF, vol. 5(2), pages 211-235, November.
    8. Chu, Chi-Yang & Henderson, Daniel J. & Parmeter, Christopher F., 2017. "On discrete Epanechnikov kernel functions," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 79-105.
    9. Cordero, José Manuel & Pedraja-Chaparro, Francisco & Pisaflores, Elsa C. & Polo, Cristina, 2016. "Efficiency assessment of Portuguese municipalities using a conditional nonparametric approach," MPRA Paper 70674, University Library of Munich, Germany.
    10. Bontemps, Christophe & Racine, Jeffrey S. & Simioni, Michel, "undated". "Nonparametric vs parametric binary choice models: An empirical investigation," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 116005, European Association of Agricultural Economists.
    11. Marc Aliana & Diego Prior & Emili Tortosa-Ausina, 2024. "Assessing the impact of environmental factors on emergency healthcare quality: Implications for budget allocation," Working Papers 2024/04, Economics Department, Universitat Jaume I, Castellón (Spain).
    12. W. Walls, 2009. "Screen wars, star wars, and sequels," Empirical Economics, Springer, vol. 37(2), pages 447-461, October.
    13. Amini, Shahram & Battisti, Michele & Parmeter, Christopher F., 2017. "Decomposing changes in the conditional variance of GDP over time," Economic Modelling, Elsevier, vol. 61(C), pages 376-387.
    14. Cordero Ferrera, Jose Manuel & Alonso Morán, Edurne & Nuño Solís, Roberto & Orueta, Juan F. & Souto Arce, Regina, 2013. "Efficiency assessment of primary care providers: A conditional nonparametric approach," MPRA Paper 51926, University Library of Munich, Germany.
    15. Cordero, Jose M. & Polo, Cristina & Santín, Daniel & Simancas, Rosa, 2018. "Efficiency measurement and cross-country differences among schools: A robust conditional nonparametric analysis," Economic Modelling, Elsevier, vol. 74(C), pages 45-60.
    16. Spyros Vliamos & Nickolaos Tzeremes, 2012. "Factors Influencing Entrepreneurial Process and Firm Start-Ups: Evidence from Central Greece," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 3(3), pages 250-264, September.
    17. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    18. repec:clg:wpaper:2008-28 is not listed on IDEAS
    19. repec:wyi:journl:002074 is not listed on IDEAS
    20. Nuno Baetas da Silva & João Sousa Andrade, 2016. "The relationship between social transfers and poverty reduction: A nonparametric approach for the EU-27," GEMF Working Papers 2016-09, GEMF, Faculty of Economics, University of Coimbra.
    21. Efromovich, Sam, 2011. "Nonparametric estimation of the anisotropic probability density of mixed variables," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 468-481, March.
    22. Xibin Zhang & Maxwell L. King & Han Lin Shang, 2016. "Bayesian Bandwidth Selection for a Nonparametric Regression Model with Mixed Types of Regressors," Econometrics, MDPI, vol. 4(2), pages 1-27, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:3:y:2015:i:2:p:199-214:d:47581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.