IDEAS home Printed from https://ideas.repec.org/a/gam/jchals/v6y2015i2p202-228d55358.html
   My bibliography  Save this article

Climate Action Gaming Experiment: Methods and Example Results

Author

Listed:
  • Clifford Singer

    (Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois atUrbana-Champaign, MC-234, Urbana, IL 61801, USA)

  • Leah Matchett

    (Department of Geology, University of Illinois at Urbana-Champaign, MC-235, Urbana, IL 61801,USA)

Abstract

An exercise has been prepared and executed to simulate international interactions on policies related to greenhouse gases and global albedo management. Simulation participants are each assigned one of six regions that together contain all of the countries in the world. Participants make quinquennial policy decisions on greenhouse gas emissions, recapture of CO2 from the atmosphere, and/or modification of the global albedo. Costs of climate change and of implementing policy decisions impact each region’s gross domestic product. Participants are tasked with maximizing economic benefits to their region while nearly stabilizing atmospheric CO2 concentrations by the end of the simulation in Julian year 2195. Results are shown where regions most adversely affected by effects of greenhouse gas emissions resort to increases in the earth’s albedo to reduce net solar insolation. These actions induce temperate region countries to reduce net greenhouse gas emissions. An example outcome is a trajectory to the year 2195 of atmospheric greenhouse emissions and concentrations, sea level, and global average temperature.

Suggested Citation

  • Clifford Singer & Leah Matchett, 2015. "Climate Action Gaming Experiment: Methods and Example Results," Challenges, MDPI, vol. 6(2), pages 1-27, September.
  • Handle: RePEc:gam:jchals:v:6:y:2015:i:2:p:202-228:d:55358
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2078-1547/6/2/202/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2078-1547/6/2/202/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Naomi Vaughan & Timothy Lenton, 2011. "A review of climate geoengineering proposals," Climatic Change, Springer, vol. 109(3), pages 745-790, December.
    2. Riahi, Keywan & Rubin, Edward S. & Schrattenholzer, Leo, 2004. "Prospects for carbon capture and sequestration technologies assuming their technological learning," Energy, Elsevier, vol. 29(9), pages 1309-1318.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seth D. Baum & Timothy M. Maher & Jacob Haqq-Misra, 2013. "Double catastrophe: intermittent stratospheric geoengineering induced by societal collapse," Environment Systems and Decisions, Springer, vol. 33(1), pages 168-180, March.
    2. Lai, N.Y.G. & Yap, E.H. & Lee, C.W., 2011. "Viability of CCS: A broad-based assessment for Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3608-3616.
    3. Kate Elizabeth Gannon, Mike Hulme, 2017. "Geoengineering at the ‘edge of the world’: exploring perceptions of ocean fertilization through the Haida Salmon Restoration Corporation," GRI Working Papers 280, Grantham Research Institute on Climate Change and the Environment.
    4. Walsh, D.M. & O'Sullivan, K. & Lee, W.T. & Devine, M.T., 2014. "When to invest in carbon capture and storage technology: A mathematical model," Energy Economics, Elsevier, vol. 42(C), pages 219-225.
    5. Nguyen, Ngoc N. & La, Vinh T. & Huynh, Chinh D. & Nguyen, Anh V., 2022. "Technical and economic perspectives of hydrate-based carbon dioxide capture," Applied Energy, Elsevier, vol. 307(C).
    6. Lohwasser, Richard & Madlener, Reinhard, 2013. "Relating R&D and investment policies to CCS market diffusion through two-factor learning," Energy Policy, Elsevier, vol. 52(C), pages 439-452.
    7. Alshammari, Yousef M. & Sarathy, S. Mani, 2017. "Achieving 80% greenhouse gas reduction target in Saudi Arabia under low and medium oil prices," Energy Policy, Elsevier, vol. 101(C), pages 502-511.
    8. Muhammet A. Bas & Aseem Mahajan, 2020. "Contesting the climate," Climatic Change, Springer, vol. 162(4), pages 1985-2002, October.
    9. Mathews, John A., 2008. "Carbon-negative biofuels," Energy Policy, Elsevier, vol. 36(3), pages 940-945, March.
    10. Alina Ilinova & Natalia Romasheva & Alexey Cherepovitsyn, 2021. "CC(U)S Initiatives: Public Effects and “Combined Value” Performance," Resources, MDPI, vol. 10(6), pages 1-20, June.
    11. Dahiru Alhaji-Bala Birnintsaba & Hüseyin Ozdeser & Andisheh Saliminezhad, 2021. "Impact Analysis on the Effective Synergy Between Climate Change, Ecological Degradation and Energy Consumption on Economic Growth in Nigeria," SAGE Open, , vol. 11(4), pages 21582440211, December.
    12. Lohwasser, Richard & Madlener, Reinhard, 2009. "Impact of CCS on the Economics of Coal-Fired Power Plants: Why Investment Costs Do and Efficiency Doesn’t Matter," FCN Working Papers 7/2009, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    13. Lomax, Guy & Workman, Mark & Lenton, Timothy & Shah, Nilay, 2015. "Reframing the policy approach to greenhouse gas removal technologies," Energy Policy, Elsevier, vol. 78(C), pages 125-136.
    14. Xu, Zhongming & Fang, Chenhao & Ma, Tieju, 2020. "Analysis of China’s olefin industry using a system optimization model considering technological learning and energy consumption reduction," Energy, Elsevier, vol. 191(C).
    15. Hurlbert, Margot & Osazuwa-Peters, Mac, 2023. "Carbon capture and storage in Saskatchewan: An analysis of communicative practices in a contested technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    16. Gambhir, Ajay & Schulz, Niels & Napp, Tamaryn & Tong, Danlu & Munuera, Luis & Faist, Mark & Riahi, Keywan, 2013. "A hybrid modelling approach to develop scenarios for China's carbon dioxide emissions to 2050," Energy Policy, Elsevier, vol. 59(C), pages 614-632.
    17. Andreas Makoto Hein & Jean-Baptiste Rudelle, 2020. "Energy Limits to the Gross Domestic Product on Earth," Working Papers hal-02570677, HAL.
    18. Zhou, Wenji & Zhu, Bing & Fuss, Sabine & Szolgayová, Jana & Obersteiner, Michael & Fei, Weiyang, 2010. "Uncertainty modeling of CCS investment strategy in China's power sector," Applied Energy, Elsevier, vol. 87(7), pages 2392-2400, July.
    19. Yeh, Sonia & Rubin, Edward S., 2007. "A centurial history of technological change and learning curves for pulverized coal-fired utility boilers," Energy, Elsevier, vol. 32(10), pages 1996-2005.
    20. Moglianesi, Andrea & Keppo, Ilkka & Lerede, Daniele & Savoldi, Laura, 2023. "Role of technology learning in the decarbonization of the iron and steel sector: An energy system approach using a global-scale optimization model," Energy, Elsevier, vol. 274(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jchals:v:6:y:2015:i:2:p:202-228:d:55358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.