IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i15p1667-d1715520.html
   My bibliography  Save this article

Plastic Film Mulching Regulates Soil Respiration and Temperature Sensitivity in Maize Farming Across Diverse Hydrothermal Conditions

Author

Listed:
  • Jianjun Yang

    (Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou 730000, China
    State Key Laboratory of Grassland Agro–Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
    These authors contributed equally to this work.)

  • Rui Wang

    (CNG Wind Energy Co., Ltd., Beijing 100071, China
    These authors contributed equally to this work.)

  • Xiaopeng Shi

    (Dingxi Academy of Agriculture Sciences, Dingxi 743000, China)

  • Yufei Li

    (State Key Laboratory of Grassland Agro–Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China)

  • Rafi Ullah

    (State Key Laboratory of Grassland Agro–Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China)

  • Feng Zhang

    (State Key Laboratory of Grassland Agro–Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China)

Abstract

Soil respiration (Rt), consisting of heterotrophic (Rh) and autotrophic respiration (Ra), plays a vital role in terrestrial carbon cycling and is sensitive to soil temperature and moisture. In dryland agriculture, plastic film mulching (PM) is widely used to regulate soil hydrothermal conditions, but its effects on Rt components and their temperature sensitivity (Q 10 ) across regions remain unclear. A two-year field study was conducted at two rain-fed maize sites: Anding (warmer, semi-arid) and Yuzhong (colder, drier). PM significantly increased Rt, Rh, and Ra, especially Ra, due to enhanced root biomass and improved microclimate. Yield increased by 33.6–165%. Peak respiration occurred earlier in Anding, aligned with maize growth and soil temperature. PM reduced Q 10 of Rt and Ra in Anding, but only Ra in Yuzhong. Rh Q 10 remained stable, indicating microbial respiration was less sensitive to temperature changes. Structural equation modeling revealed that Rt and Ra were mainly driven by soil temperature and root biomass, while Rh was more influenced by microbial biomass carbon (MBC) and dissolved organic carbon (DOC). Despite increased CO 2 emissions, PM improved carbon emission efficiency (CEE), particularly in Yuzhong (+67%). The application of PM is recommended to enhance yield while optimizing carbon efficiency in dryland farming systems.

Suggested Citation

  • Jianjun Yang & Rui Wang & Xiaopeng Shi & Yufei Li & Rafi Ullah & Feng Zhang, 2025. "Plastic Film Mulching Regulates Soil Respiration and Temperature Sensitivity in Maize Farming Across Diverse Hydrothermal Conditions," Agriculture, MDPI, vol. 15(15), pages 1-16, August.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:15:p:1667-:d:1715520
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/15/1667/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/15/1667/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sara Paliaga & Caterina Lucia & Daniela Pampinella & Sofia Maria Muscarella & Luigi Badalucco & Eristanna Palazzolo & Vito Armando Laudicina, 2023. "Shifting Long-Term Tillage to Geotextile Mulching for Weed Control Improves Soil Quality and Yield of Orange Orchards," Agriculture, MDPI, vol. 13(4), pages 1-11, March.
    2. Song, Qilong & Zhang, Fangfang & Li, Xin & Yue, Shanchao & Luo, Zhuzhu & Li, Shiqing, 2024. "Understanding of maize root responses to changes in water status induced by plastic film mulching cultivation on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 301(C).
    3. Peter M. Cox & Richard A. Betts & Chris D. Jones & Steven A. Spall & Ian J. Totterdell, 2000. "Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model," Nature, Nature, vol. 408(6809), pages 184-187, November.
    4. Eric A. Davidson & Ivan A. Janssens, 2006. "Temperature sensitivity of soil carbon decomposition and feedbacks to climate change," Nature, Nature, vol. 440(7081), pages 165-173, March.
    5. Peter M. Cox & Richard A. Betts & Chris D. Jones & Steven A. Spall & Ian J. Totterdell, 2000. "Erratum: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model," Nature, Nature, vol. 408(6813), pages 750-750, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiongwen Chen & Wilfred Post & Richard Norby & Aimée Classen, 2011. "Modeling soil respiration and variations in source components using a multi-factor global climate change experiment," Climatic Change, Springer, vol. 107(3), pages 459-480, August.
    2. Shakouri G., Hamed, 2019. "The share of cooling electricity in global warming: Estimation of the loop gain for the positive feedback," Energy, Elsevier, vol. 179(C), pages 747-761.
    3. Vera D. Meyer & Peter Köhler & Nadine T. Smit & Julius S. Lipp & Bingbing Wei & Gesine Mollenhauer & Enno Schefuß, 2025. "Dominant control of temperature on (sub-)tropical soil carbon turnover," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    4. Hongru Sun & Guangsheng Zhou & Zhenzhu Xu & Yuhui Wang & Xiaodi Liu & Hongying Yu & Quanhui Ma & Bingrui Jia, 2020. "Temperature sensitivity increases with decreasing soil carbon quality in forest ecosystems across northeast China," Climatic Change, Springer, vol. 160(3), pages 373-384, June.
    5. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.
    6. Govind, Ajit & Chen, Jing Ming & Bernier, Pierre & Margolis, Hank & Guindon, Luc & Beaudoin, Andre, 2011. "Spatially distributed modeling of the long-term carbon balance of a boreal landscape," Ecological Modelling, Elsevier, vol. 222(15), pages 2780-2795.
    7. Eliseev, Alexey V. & Mokhov, Igor I., 2008. "Eventual saturation of the climate–carbon cycle feedback studied with a conceptual model," Ecological Modelling, Elsevier, vol. 213(1), pages 127-132.
    8. Brovkin, Victor & Cherkinsky, Alexander & Goryachkin, Sergey, 2008. "Estimating soil carbon turnover using radiocarbon data: A case-study for European Russia," Ecological Modelling, Elsevier, vol. 216(2), pages 178-187.
    9. Ulaganathan, Kandasamy & Goud, Sravanthi & Reddy, Madhavi & Kayalvili, Ulaganathan, 2017. "Genome engineering for breaking barriers in lignocellulosic bioethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1080-1107.
    10. Brazhnik, Ksenia & Shugart, H.H., 2016. "SIBBORK: A new spatially-explicit gap model for boreal forest," Ecological Modelling, Elsevier, vol. 320(C), pages 182-196.
    11. Kai Yin & Dengsheng Lu & Yichen Tian & Qianjun Zhao & Chao Yuan, 2014. "Evaluation of Carbon and Oxygen Balances in Urban Ecosystems Using Land Use/Land Cover and Statistical Data," Sustainability, MDPI, vol. 7(1), pages 1-27, December.
    12. Agudelo, César Augusto Ruiz & Bustos, Sandra Liliana Hurtado & Moreno, Carmen Alicia Parrado, 2020. "Modeling interactions among multiple ecosystem services. A critical review," Ecological Modelling, Elsevier, vol. 429(C).
    13. Vincent Gitz & Jean-Charles Hourcade & Philippe Ciais, 2006. "The Timing of Biological Carbon Sequestration and Carbon Abatement in the Energy Sector Under Optimal Strategies Against Climate Risks," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 113-134.
    14. Ouardighi, Fouad El & Sim, Jeong Eun & Kim, Bowon, 2016. "Pollution accumulation and abatement policy in a supply chain," European Journal of Operational Research, Elsevier, vol. 248(3), pages 982-996.
    15. Kim, Hyeyoung & House, Lisa A. & KIm, Tae-Kyun, . "Consumer perceptions of climate change and willingness to pay for mandatory implementation of low carbon labels: the case of South Korea," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 19(4).
    16. Guoju, Xiao & Weixiang, Liu & Qiang, Xu & Zhaojun, Sun & Jing, Wang, 2005. "Effects of temperature increase and elevated CO2 concentration, with supplemental irrigation, on the yield of rain-fed spring wheat in a semiarid region of China," Agricultural Water Management, Elsevier, vol. 74(3), pages 243-255, June.
    17. Sogol Moradian & Farhad Yazdandoost, 2021. "Seasonal meteorological drought projections over Iran using the NMME data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1089-1107, August.
    18. Viola, Flavio M. & Paiva, Susana L.D. & Savi, Marcelo A., 2010. "Analysis of the global warming dynamics from temperature time series," Ecological Modelling, Elsevier, vol. 221(16), pages 1964-1978.
    19. Farrelly, Damien J. & Everard, Colm D. & Fagan, Colette C. & McDonnell, Kevin P., 2013. "Carbon sequestration and the role of biological carbon mitigation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 712-727.
    20. Marc Kennedy & Clive Anderson & Anthony O'Hagan & Mark Lomas & Ian Woodward & John Paul Gosling & Andreas Heinemeyer, 2008. "Quantifying uncertainty in the biospheric carbon flux for England and Wales," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(1), pages 109-135, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:15:p:1667-:d:1715520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.