IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i14p1484-d1699095.html
   My bibliography  Save this article

A Knowledge-Driven Smart System Based on Reinforcement Learning for Pork Supply-Demand Regulation

Author

Listed:
  • Haohao Song

    (College of Engineering, Northeast Agricultural University, Harbin 150030, China)

  • Jiquan Wang

    (College of Engineering, Northeast Agricultural University, Harbin 150030, China)

Abstract

With the advancement of Agriculture 4.0, intelligent systems and data-driven technologies offer new opportunities for pork supply-demand balance regulation, while also confronting challenges such as production cycle fluctuations and epidemic outbreaks. This paper introduces a knowledge-driven smart system for pork supply-demand regulation, which integrates essential components including a knowledge base, a mathematical-model-based expert system, an enhanced optimization framework, and a real-time feedback mechanism. Around the core of the system, a nonlinear constrained optimization model is established, which uses adjustments to newly retained gilts as decision variables and minimizes supply-demand squared errors as its objective function, incorporating multi-dimensional factors such as pig growth dynamics, epidemic impacts, consumption trends, and international trade into its analytical framework. By harnessing dynamic decision-making capabilities of reinforcement learning (RL), we design an optimization architecture centered on the Q-learning mechanism and dual-strategy pools, which is integrated into the honey badger algorithm to form the RL-enhanced honey badger algorithm (RLEHBA). This innovation achieves an efficient balance between exploration and exploitation in model solving and improves system adaptability. Numerical experiments demonstrate RLEHBA’s superior performance over State-of-the-Art algorithms on the CEC 2017 benchmark. A case study of China’s 2026 pork regulation confirms the system’s practical value in stabilizing the supply-demand balance and optimizing resource allocation. Finally, some targeted managerial insights are proposed. This study constructs a replicable framework for intelligent livestock regulation, and it also holds transformative significance for sustainable and adaptive supply chain management in global agri-food systems.

Suggested Citation

  • Haohao Song & Jiquan Wang, 2025. "A Knowledge-Driven Smart System Based on Reinforcement Learning for Pork Supply-Demand Regulation," Agriculture, MDPI, vol. 15(14), pages 1-34, July.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:14:p:1484-:d:1699095
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/14/1484/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/14/1484/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Erez Cohen, 2022. "Regulating Demand or Supply: Examining Israel’s Public Policy for Reducing Housing Prices During 2015–2019," Housing Policy Debate, Taylor & Francis Journals, vol. 32(3), pages 533-548, May.
    2. Hashim, Fatma A. & Houssein, Essam H. & Hussain, Kashif & Mabrouk, Mai S. & Al-Atabany, Walid, 2022. "Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 84-110.
    3. Jie Pang & Juan Yin & Guangchang Lu & Shimei Li, 2023. "Supply and Demand Changes, Pig Epidemic Shocks, and Pork Price Fluctuations: An Empirical Study Based on an SVAR Model," Sustainability, MDPI, vol. 15(17), pages 1-16, August.
    4. Zhou, Kaile & Chu, Yibo & Hu, Rong, 2023. "Energy supply-demand interaction model integrating uncertainty forecasting and peer-to-peer energy trading," Energy, Elsevier, vol. 285(C).
    5. Panos Fousekis & Brian J Revell, 2003. "Quadratic Differential Demand Systems and the Retail Demand for Pork in Great Britain," Journal of Agricultural Economics, Wiley Blackwell, vol. 54(3), pages 417-430, November.
    6. Tserenpurev Chuluunsaikhan & Jeong-Hun Kim & So-Hyun Park & Aziz Nasridinov, 2024. "Analyzing Internal and External Factors in Livestock Supply Forecasting Using Machine Learning: Sustainable Insights from South Korea," Sustainability, MDPI, vol. 16(16), pages 1-21, August.
    7. Monika Zielińska-Sitkiewicz & Mariola Chrzanowska, 2021. "Prediction of pork meat prices by selected methods as an element supporting the decision-making process," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(3), pages 137-152.
    8. Leishi Wang & Mingtao Li & Xin Pei & Juan Zhang, 2022. "Optimal Breeding Strategy for Livestock with a Dynamic Price," Mathematics, MDPI, vol. 10(10), pages 1-24, May.
    9. Haohao Song & Jiquan Wang & Gang Xu & Zhanwei Tian & Fei Xu & Hong Deng, 2024. "Novel Model for Pork Supply Prediction in China Based on Modified Self-Organizing Migrating Algorithm," Agriculture, MDPI, vol. 14(9), pages 1-30, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. AbdelAty, Amr M. & Fouda, Mohammed E., 2025. "Fractional-order Izhikevich neuron Model: PI-rules numerical simulations and parameter identification," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
    2. Hegazy Rezk & A. G. Olabi & Mohammad Ali Abdelkareem & Abdul Hai Alami & Enas Taha Sayed, 2023. "Optimal Parameter Determination of Membrane Bioreactor to Boost Biohydrogen Production-Based Integration of ANFIS Modeling and Honey Badger Algorithm," Sustainability, MDPI, vol. 15(2), pages 1-13, January.
    3. Tserenpurev Chuluunsaikhan & Jeong-Hun Kim & So-Hyun Park & Aziz Nasridinov, 2024. "Analyzing Internal and External Factors in Livestock Supply Forecasting Using Machine Learning: Sustainable Insights from South Korea," Sustainability, MDPI, vol. 16(16), pages 1-21, August.
    4. Mahamed G. H. Omran & Maurice Clerc & Fatme Ghaddar & Ahmad Aldabagh & Omar Tawfik, 2022. "Permutation Tests for Metaheuristic Algorithms," Mathematics, MDPI, vol. 10(13), pages 1-15, June.
    5. Chenyang Gao & Teng Li & Yuelin Gao & Ziyu Zhang, 2024. "A Comprehensive Multi-Strategy Enhanced Biogeography-Based Optimization Algorithm for High-Dimensional Optimization and Engineering Design Problems," Mathematics, MDPI, vol. 12(3), pages 1-35, January.
    6. Chao Zhou & Bing Gao & Haiyue Yang & Xudong Zhang & Jiaqi Liu & Lingling Li, 2022. "Junction Temperature Prediction of Insulated-Gate Bipolar Transistors in Wind Power Systems Based on an Improved Honey Badger Algorithm," Energies, MDPI, vol. 15(19), pages 1-19, October.
    7. Murtadha Al-Kaabi & Virgil Dumbrava & Mircea Eremia, 2022. "A Slime Mould Algorithm Programming for Solving Single and Multi-Objective Optimal Power Flow Problems with Pareto Front Approach: A Case Study of the Iraqi Super Grid High Voltage," Energies, MDPI, vol. 15(20), pages 1-33, October.
    8. Yang, Xiaohui & Zhang, Zhonglian & Mei, Linghao & Wang, Xiaopeng & Deng, Yeheng & Wei, Shi & Liu, Xiaoping, 2023. "Optimal configuration of improved integrated energy system based on stepped carbon penalty response and improved power to gas," Energy, Elsevier, vol. 263(PD).
    9. Arabatzis, Garyfallos & Klonaris, Stathis, 2009. "An analysis of Greek wood and wood product imports: Evidence from the linear quadratic aids," Forest Policy and Economics, Elsevier, vol. 11(4), pages 266-270, July.
    10. Ghareeb Moustafa & Mostafa Elshahed & Ahmed R. Ginidi & Abdullah M. Shaheen & Hany S. E. Mansour, 2023. "A Gradient-Based Optimizer with a Crossover Operator for Distribution Static VAR Compensator (D-SVC) Sizing and Placement in Electrical Systems," Mathematics, MDPI, vol. 11(5), pages 1-30, February.
    11. Ren, Xin-Yu & Li, Ling-Ling & Ji, Bing-Xiang & Liu, Jia-Qi, 2024. "Design and analysis of solar hybrid combined cooling, heating and power system: A bi-level optimization model," Energy, Elsevier, vol. 292(C).
    12. Richard J. Vyn & Getu Hailu, 2015. "Discount Usage and Price Discrimination for Pork Products in Canada," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 63(4), pages 449-474, December.
    13. Arup Das & Subhojit Dawn & Sadhan Gope & Taha Selim Ustun, 2022. "A Strategy for System Risk Mitigation Using FACTS Devices in a Wind Incorporated Competitive Power System," Sustainability, MDPI, vol. 14(13), pages 1-21, July.
    14. Hengfei Yang & Shiyuan Yang & Debiao Meng & Chenghao Hu & Chaosheng Wu & Bo Yang & Peng Nie & Yuan Si & Xiaoyan Su, 2024. "Optimization of Analog Circuit Parameters Using Bidirectional Long Short-Term Memory Coupled with an Enhanced Whale Optimization Algorithm," Mathematics, MDPI, vol. 13(1), pages 1-24, December.
    15. Dapeng Zhou & Jing Zhang & Honghua Huan & Nanyan Hu & Yinqiu Li & Jinhua Cheng, 2025. "Assessing the Impact of External Shocks on Prices in the Live Pig Industry Chain: Evidence from China," Sustainability, MDPI, vol. 17(5), pages 1-28, February.
    16. Pan, Jeng-Shyang & Zhang, Li-Gang & Wang, Ruo-Bin & Snášel, Václav & Chu, Shu-Chuan, 2022. "Gannet optimization algorithm : A new metaheuristic algorithm for solving engineering optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 343-373.
    17. Junguo Hua & Jing Ding & Yufan Chen & Lulu Kang & Haiying Zhang & Junhua Zhang, 2024. "The fluctuation of pig prices and the identification of major drivers in China," PLOS ONE, Public Library of Science, vol. 19(11), pages 1-29, November.
    18. Vikneswari Someetheram & Muhammad Fadhil Marsani & Mohd Shareduwan Mohd Kasihmuddin & Nur Ezlin Zamri & Siti Syatirah Muhammad Sidik & Siti Zulaikha Mohd Jamaludin & Mohd. Asyraf Mansor, 2022. "Random Maximum 2 Satisfiability Logic in Discrete Hopfield Neural Network Incorporating Improved Election Algorithm," Mathematics, MDPI, vol. 10(24), pages 1-29, December.
    19. Anass Houd & Benoit Piranda & Raphael Matos & Julien Bourgeois, 2024. "Swarm intelligence-based framework for accelerated and optimized assembly line design in the automotive industry," Journal of Intelligent Manufacturing, Springer, vol. 35(6), pages 2829-2843, August.
    20. Araby Mahdy & Abdullah Shaheen & Ragab El-Sehiemy & Ahmed Ginidi & Saad F. Al-Gahtani, 2023. "Single- and Multi-Objective Optimization Frameworks of Shape Design of Tubular Linear Synchronous Motor," Energies, MDPI, vol. 16(5), pages 1-27, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:14:p:1484-:d:1699095. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.