IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2024i1p47-d1555135.html
   My bibliography  Save this article

Isolation and Characterization of the Physiochemical Properties of Brewer’s Spent Grain

Author

Listed:
  • Kalidas Mainali

    (Sustainable Biofuel and Co-Products Research Unit, US Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA)

  • Madhav P. Yadav

    (Sustainable Biofuel and Co-Products Research Unit, US Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA)

  • Brajendra K. Sharma

    (Sustainable Biofuel and Co-Products Research Unit, US Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA)

  • Majher I. Sarker

    (Sustainable Biofuel and Co-Products Research Unit, US Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA)

  • Helen Ngo

    (Sustainable Biofuel and Co-Products Research Unit, US Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA)

  • Arland Hotchkiss

    (Sustainable Biofuel and Co-Products Research Unit, US Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA)

  • Stefanie Simon

    (Sustainable Biofuel and Co-Products Research Unit, US Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA)

Abstract

Large quantities of brewer’s spent grains are not fully utilized even as cattle feed. These feedstocks can be used to produce highly functional biomaterials, carbonaceous materials, and additives. In this investigation, four major fractions were isolated and characterized: Hemicellulose A, Hemicellulose B, cellulosic-rich fraction (CRF), and oligosaccharides. Overall, 21.4% Hemicellulose A, 18.5% Hemicellulose B, 17.4% cellulosic rich fraction, and 5.5% pure oligosaccharides were obtained from the hexane-extracted brewery’s spent grains. Detailed physio-chemical analyses of each fraction showed that these fractions can be used to produce useful products such as emulsifiers, carbonaceous materials, modified cellulosic fibers, additives, as well as N-doped chars. Component analyses revealed that, Hemi. A contains high fixed carbon (20 wt.%), followed by hexane extracted material (17.1 wt.%), CRF (14.6 wt.%), and Hemi. B (14.5%). Standard proximate analyses showed that Hemi. A has the highest protein (66 wt.%), which can be utilized as a renewable solid-state N-precursor as dopants during the thermochemical conversion process. The sugar composition revealed that BSG has a typical arabinoxylan structure with a high percentage of arabinose and xylose. It also contains a high percentage of glucose, which may come from the residual β-glucan present in the BSG. FTIR analyses revealed changes in the structure of each fraction. Hence, BSG and extracted fractions exhibit significant potential for waste valorization, contributing significantly to the full utilization of products from the brewing industry.

Suggested Citation

  • Kalidas Mainali & Madhav P. Yadav & Brajendra K. Sharma & Majher I. Sarker & Helen Ngo & Arland Hotchkiss & Stefanie Simon, 2024. "Isolation and Characterization of the Physiochemical Properties of Brewer’s Spent Grain," Agriculture, MDPI, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:gam:jagris:v:15:y:2024:i:1:p:47-:d:1555135
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/1/47/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/1/47/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xu, Feng & Yu, Jianming & Tesso, Tesfaye & Dowell, Floyd & Wang, Donghai, 2013. "Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review," Applied Energy, Elsevier, vol. 104(C), pages 801-809.
    2. Ashfaq Ahmed & Muhammad S. Abu Bakar & Abdul Razzaq & Syarif Hidayat & Farrukh Jamil & Muhammad Nadeem Amin & Rahayu S. Sukri & Noor S. Shah & Young-Kwon Park, 2021. "Characterization and Thermal Behavior Study of Biomass from Invasive Acacia mangium Species in Brunei Preceding Thermochemical Conversion," Sustainability, MDPI, vol. 13(9), pages 1-13, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pitak, Lakkana & Sirisomboon, Panmanas & Saengprachatanarug, Khwantri & Wongpichet, Seree & Posom, Jetsada, 2021. "Rapid elemental composition measurement of commercial pellets using line-scan hyperspectral imaging analysis," Energy, Elsevier, vol. 220(C).
    2. Krishna, Bhavya B. & Biswas, Bijoy & Ohri, Priyanka & Kumar, Jitendra & Singh, Rawel & Bhaskar, Thallada, 2016. "Pyrolysis of Cedrus deodara saw mill shavings in hydrogen and nitrogen atmosphere for the production of bio-oil," Renewable Energy, Elsevier, vol. 98(C), pages 238-244.
    3. Hu, Lin & Xu, Mei-Ling & Wei, Xian-Yong & Yu, Changlin & Wu, Jingcheng & Wang, Haiyong & Liu, Tianlong, 2024. "Effect of ethanolysis on the structure evolution, pyrolysis kinetics, and volatile products of waste poplar sawdust," Energy, Elsevier, vol. 305(C).
    4. Kłosowski, Grzegorz & Mikulski, Dawid, 2023. "Changes in various lignocellulose biomasses structure after microwave-assisted hydrotropic pretreatment," Renewable Energy, Elsevier, vol. 219(P1).
    5. Fan, Yuyang & Tippayawong, Nakorn & Wei, Guoqiang & Huang, Zhen & Zhao, Kun & Jiang, Liqun & Zheng, Anqing & Zhao, Zengli & Li, Haibin, 2020. "Minimizing tar formation whilst enhancing syngas production by integrating biomass torrefaction pretreatment with chemical looping gasification," Applied Energy, Elsevier, vol. 260(C).
    6. Junying Chen & Lijun Wang & Bo Zhang & Rui Li & Abolghasem Shahbazi, 2018. "Hydrothermal Liquefaction Enhanced by Various Chemicals as a Means of Sustainable Dairy Manure Treatment," Sustainability, MDPI, vol. 10(1), pages 1-14, January.
    7. Bello, Yusuf H. & Ahmed, Mahmoud A. & Ookawara, Shinichi & Elwardany, Ahmed E., 2022. "Numerical and experimental investigation on air distributor design of fluidized bed reactor of sawdust pyrolysis," Energy, Elsevier, vol. 239(PC).
    8. Song, Yintao & Chen, Zhuo & Li, Yanling & Sun, Tanglei & Huhetaoli, & Lei, Tingzhou & Liu, Peng, 2024. "Regulation of energy properties and thermal behavior of bio-coal from lignocellulosic biomass using torrefaction," Energy, Elsevier, vol. 289(C).
    9. Abdul Waheed & Salman Raza Naqvi & Imtiaz Ali, 2022. "Co-Torrefaction Progress of Biomass Residue/Waste Obtained for High-Value Bio-Solid Products," Energies, MDPI, vol. 15(21), pages 1-20, November.
    10. Tom Haeldermans & Jeamichel Puente Torres & Willem Vercruysse & Robert Carleer & Pieter Samyn & Dries Vandamme & Jan Yperman & Ann Cuypers & Kenny Vanreppelen & Sonja Schreurs, 2023. "An Experimentally Validated Selection Protocol for Biochar as a Sustainable Component in Green Roofs," Waste, MDPI, vol. 1(1), pages 1-19, January.
    11. John Steven Devia-Orjuela & Christian E Alvarez-Pugliese & Dayana Donneys-Victoria & Nilson Marriaga Cabrales & Luz Edith Barba Ho & Balazs Brém & Anca Sauciuc & Emese Gál & Douglas Espin & Martin Sch, 2019. "Evaluation of Press Mud, Vinasse Powder and Extraction Sludge with Ethanol in a Pyrolysis Process," Energies, MDPI, vol. 12(21), pages 1-21, October.
    12. Pizzi, A. & Toscano, G. & Foppa Pedretti, E. & Duca, D. & Rossini, G. & Mengarelli, C. & Ilari, A. & Renzi, A. & Mancini, M., 2018. "Energy characteristics assessment of olive pomace by means of FT-NIR spectroscopy," Energy, Elsevier, vol. 147(C), pages 51-58.
    13. Andrea Kruse & Thomas A. Zevaco, 2018. "Properties of Hydrochar as Function of Feedstock, Reaction Conditions and Post-Treatment," Energies, MDPI, vol. 11(3), pages 1-12, March.
    14. Chen, Dongyu & Gao, Dongxiao & Capareda, Sergio C. & E, Shuang & Jia, Fengrui & Wang, Ying, 2020. "Influences of hydrochloric acid washing on the thermal decomposition behavior and thermodynamic parameters of sweet sorghum stalk," Renewable Energy, Elsevier, vol. 148(C), pages 1244-1255.
    15. Zhang, Ke & Zhou, Ling & Brady, Michael & Xu, Feng & Yu, Jianming & Wang, Donghai, 2017. "Fast analysis of high heating value and elemental compositions of sorghum biomass using near-infrared spectroscopy," Energy, Elsevier, vol. 118(C), pages 1353-1360.
    16. Nanduri, Arvind & Kulkarni, Shreesh S. & Mills, Patrick L., 2021. "Experimental techniques to gain mechanistic insight into fast pyrolysis of lignocellulosic biomass: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    17. Gupta, Ankita & Mahajani, Sanjay, 2020. "Kinetic studies in pyrolysis of garden waste in the context of downdraft gasification: Experiments and modeling," Energy, Elsevier, vol. 208(C).
    18. Gillespie, Gary D. & Everard, Colm D. & McDonnell, Kevin P., 2015. "Prediction of biomass pellet quality indices using near infrared spectroscopy," Energy, Elsevier, vol. 80(C), pages 582-588.
    19. Long, Jinxing & Shu, Riyang & Yuan, Zhengqiu & Wang, Tiejun & Xu, Ying & Zhang, Xinghua & Zhang, Qi & Ma, Longlong, 2015. "Efficient valorization of lignin depolymerization products in the present of NixMg1−xO," Applied Energy, Elsevier, vol. 157(C), pages 540-545.
    20. Li, Haowei & Ma, Hongwei & Zhao, Weijie & Li, Xuehui & Long, Jinxing, 2019. "Upgrading lignin bio-oil for oxygen-containing fuel production using Ni/MgO: Effect of the catalyst calcination temperature," Applied Energy, Elsevier, vol. 253(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2024:i:1:p:47-:d:1555135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.