IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i12p2113-d1527094.html
   My bibliography  Save this article

Enhancing Agricultural Biogas Desulfurization: Improving Cost-Efficiency and Robustness Through Micro-Aeration with Psychrophilic Anaerobic Liquid/Solid Media

Author

Listed:
  • Rajinikanth Rajagopal

    (Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC J1M 0C8, Canada)

  • Bernard Goyette

    (Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC J1M 0C8, Canada)

Abstract

This study endeavors to develop an economical and user-friendly biological sulfide oxidation system and explore its mechanism for generating biological elemental sulfur under micro-aerobic conditions using psychrophilic anaerobically digested media (liquid/solid inoculums obtained from agricultural livestock wastes) for sulfide-free biogas production. With an initial hydrogen sulfide concentration of 5000 ppm, a biogas flow rate ranging from 0.9 to 1.8 L/h-L inoculum-mix , and an air injection rate of 0.6–1% (oxygen concentration in biogas), a remarkable biodesulfurization efficiency of 99–100% was attained using solid inoculum as the biodesulfurization medium. This efficiency was achieved without compromising the methane quality in the treated biogas. Compared to liquid inoculum, solid inoculum requires less than half the volume and no mixing equipment, such as bubble column reactors. The biodesulfurization reactor requires only 1 m 3 , which is approximately 1.5% of the volume of a wet anaerobic digester and 3% of a dry anaerobic digester, while processing cow manure (Total Solids: 20%) at 1.03 m 3 of manure per day. Moreover, it can be operated at (19–20 °C), leading to substantial reductions in cost and footprint.

Suggested Citation

  • Rajinikanth Rajagopal & Bernard Goyette, 2024. "Enhancing Agricultural Biogas Desulfurization: Improving Cost-Efficiency and Robustness Through Micro-Aeration with Psychrophilic Anaerobic Liquid/Solid Media," Agriculture, MDPI, vol. 14(12), pages 1-17, November.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:12:p:2113-:d:1527094
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/12/2113/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/12/2113/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Xiaojiao & Lu, Xingang & Yang, Gaihe & Feng, Yongzhong & Ren, Guangxin & Han, Xinhui, 2016. "Development process and probable future transformations of rural biogas in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 703-712.
    2. Massé, Daniel I. & Rajagopal, Rajinikanth & Singh, Gursharan, 2014. "Technical and operational feasibility of psychrophilic anaerobic digestion biotechnology for processing ammonia-rich waste," Applied Energy, Elsevier, vol. 120(C), pages 49-55.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean de Dieu Marcel Ufitikirezi & Martin Filip & Mohammad Ghorbani & Tomáš Zoubek & Pavel Olšan & Roman Bumbálek & Miroslav Strob & Petr Bartoš & Sandra Nicole Umurungi & Yves Theoneste Murindangabo &, 2024. "Agricultural Waste Valorization: Exploring Environmentally Friendly Approaches to Bioenergy Conversion," Sustainability, MDPI, vol. 16(9), pages 1-24, April.
    2. Wang, Jun & Xue, Qingwen & Guo, Ting & Mei, Zili & Long, Enshen & Wen, Qian & Huang, Wei & Luo, Tao & Huang, Ruyi, 2018. "A review on CFD simulating method for biogas fermentation material fluid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 64-73.
    3. Wu, Shu & Han, Hongyun, 2022. "Energy transition, intensity growth, and policy evolution: Evidence from rural China," Energy Economics, Elsevier, vol. 105(C).
    4. Jaime Jaimes-Estévez & German Zafra & Jaime Martí-Herrero & Guillermo Pelaz & Antonio Morán & Alejandra Puentes & Christian Gomez & Liliana del Pilar Castro & Humberto Escalante Hernández, 2020. "Psychrophilic Full Scale Tubular Digester Operating over Eight Years: Complete Performance Evaluation and Microbiological Population," Energies, MDPI, vol. 14(1), pages 1-17, December.
    5. Noori M. Cata Saady & Daniel I. Massé, 2015. "Impact of Organic Loading Rate on Psychrophilic Anaerobic Digestion of Solid Dairy Manure," Energies, MDPI, vol. 8(3), pages 1-18, March.
    6. Roubík, Hynek & Mazancová, Jana & Phung, Le Dinh & Banout, Jan, 2018. "Current approach to manure management for small-scale Southeast Asian farmers - Using Vietnamese biogas and non-biogas farms as an example," Renewable Energy, Elsevier, vol. 115(C), pages 362-370.
    7. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    8. Jiapei Wei & Gefu Liang & James Alex & Tongchao Zhang & Chunbo Ma, 2020. "Research Progress of Energy Utilization of Agricultural Waste in China: Bibliometric Analysis by Citespace," Sustainability, MDPI, vol. 12(3), pages 1-22, January.
    9. Yin, Dongxue & Liu, Wei & Zhai, Ningning & Wang, Yandong & Ren, Chengjie & Yang, Gaihe, 2017. "Regional differentiation of rural household biogas development and related driving factors in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1008-1018.
    10. Zhang, Lihui & Wang, Jianing & Li, Songrui, 2022. "Regional suitability analysis of the rural biogas power generation industry:A case of China," Renewable Energy, Elsevier, vol. 194(C), pages 293-306.
    11. Zou, Shuzhen & Wang, Hui & Wang, Xiaojiao & Zhou, Sha & Li, Xue & Feng, Yongzhong, 2016. "Application of experimental design techniques in the optimization of the ultrasonic pretreatment time and enhancement of methane production in anaerobic co-digestion," Applied Energy, Elsevier, vol. 179(C), pages 191-202.
    12. Jingyuan Cai & Liguo Zhang & Jing Tang & Dan Pan, 2019. "Adoption of Multiple Sustainable Manure Treatment Technologies by Pig Farmers in Rural China: A Case Study of Poyang Lake Region," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    13. Luo, Tao & Pan, Junting & Fu, Lintao & Mei, Zili & Kong, Cuixue & Huang, Hailong, 2017. "Reducing biogas emissions from village-scale plant with optimal floating-drum biogas storage tank and operation parameters," Applied Energy, Elsevier, vol. 208(C), pages 312-318.
    14. Zheng, Zehui & Liu, Jinhuan & Yuan, Xufeng & Wang, Xiaofen & Zhu, Wanbin & Yang, Fuyu & Cui, Zongjun, 2015. "Effect of dairy manure to switchgrass co-digestion ratio on methane production and the bacterial community in batch anaerobic digestion," Applied Energy, Elsevier, vol. 151(C), pages 249-257.
    15. Susanne Theuerl & Christiane Herrmann & Monika Heiermann & Philipp Grundmann & Niels Landwehr & Ulrich Kreidenweis & Annette Prochnow, 2019. "The Future Agricultural Biogas Plant in Germany: A Vision," Energies, MDPI, vol. 12(3), pages 1-32, January.
    16. Fuchs, Werner & Wang, Xuemei & Gabauer, Wolfgang & Ortner, Markus & Li, Zifu, 2018. "Tackling ammonia inhibition for efficient biogas production from chicken manure: Status and technical trends in Europe and China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 186-199.
    17. German Smetana & Ewa Neczaj & Anna Grosser, 2021. "Biomethane Potential of Selected Organic Waste and Sewage Sludge at Different Temperature Regimes," Energies, MDPI, vol. 14(14), pages 1-18, July.
    18. Li, Yanjiao & Qing, Chen & Zhou, Wenfeng & Xu, Dingde, 2025. "Exploring the role of environmental regulations in biogas development in China, from the perspective of peer effect," Energy, Elsevier, vol. 315(C).
    19. Ni, Ping & Lyu, Tao & Sun, Hao & Dong, Renjie & Wu, Shubiao, 2017. "Liquid digestate recycled utilization in anaerobic digestion of pig manure: Effect on methane production, system stability and heavy metal mobilization," Energy, Elsevier, vol. 141(C), pages 1695-1704.
    20. Yang, Ziyi & Sun, Hangyu & Kurbonova, Malikakhon & Zhou, Ling & Arhin, Samuel Gyebi & Papadakis, Vagelis G. & Goula, Maria A. & Liu, Guangqing & Zhang, Yi & Wang, Wen, 2022. "Simultaneous supplementation of magnetite and polyurethane foam carrier can reach a Pareto-optimal point to alleviate ammonia inhibition during anaerobic digestion," Renewable Energy, Elsevier, vol. 189(C), pages 104-116.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:12:p:2113-:d:1527094. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.