IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i5p649-d806234.html
   My bibliography  Save this article

Technical Efficiency of Maize Production and Its Influencing Factors in the World’s Largest Groundwater Drop Funnel Area, China

Author

Listed:
  • Zhaohong Wu

    (Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100089, China)

  • Wenyuan Hua

    (Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100089, China)

  • Liangguo Luo

    (Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100089, China)

  • Katsuya Tanaka

    (Research Center for Sustainability and Environment Economics, Shiga University, 1-1-1 Bamba, Hikone 522-8522, Japan)

Abstract

Improving the efficiency of maize production is of great significance for global food security and the effective supply of agricultural products. Based on the survey data of 381 rural households, this study uses a stochastic frontier analysis to estimate the efficiency value and empirically analyze the factors affecting the technology efficiency of maize production in the Hengshui area of the North China Plain. First, higher costs were found to be related to extensive production methods of fertilization, pesticide application, and irrigation. Second, the results showed that there was an inverted U-shaped relationship between the irrigation cost and maize output. Specifically, when the irrigation cost was about 938 yuan/hectare, the maize output per unit area was optimal. Third, there was also an inverted U-shaped relationship between the fertilizer cost and maize output, and the loss of technical efficiency of maize output was minimal when the fertilizer cost is 2547 yuan/hectare. In addition, the findings of the inefficiency influencing factor model suggested that temperature and humidity were all positively associated with the non-efficiency of maize production. These findings can provide empirical support for improving the efficiency of maize production in North China or arid and semi-arid regions around the world.

Suggested Citation

  • Zhaohong Wu & Wenyuan Hua & Liangguo Luo & Katsuya Tanaka, 2022. "Technical Efficiency of Maize Production and Its Influencing Factors in the World’s Largest Groundwater Drop Funnel Area, China," Agriculture, MDPI, vol. 12(5), pages 1-14, April.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:5:p:649-:d:806234
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/5/649/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/5/649/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Shuchang & Xiao, Wu & Li, Linlin & Ye, Yanmei & Song, Xiaoli, 2020. "Urban land use efficiency and improvement potential in China: A stochastic frontier analysis," Land Use Policy, Elsevier, vol. 99(C).
    2. Wang, Sun Ling & Huang, Jikun & Wang, Xiaobing & Tuan, Francis, 2019. "Are China’s regional agricultural productivities converging: How and why?," Food Policy, Elsevier, vol. 86(C), pages 1-1.
    3. Hung-jen Wang & Peter Schmidt, 2002. "One-Step and Two-Step Estimation of the Effects of Exogenous Variables on Technical Efficiency Levels," Journal of Productivity Analysis, Springer, vol. 18(2), pages 129-144, September.
    4. Richard Mulwa & Ali Emrouznejad & Lutta Muhammad, 2009. "Economic Efficiency of smallholder maize producers in Western Kenya: a DEA meta-frontier analysis," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 4(3), pages 250-267.
    5. de Fraiture, Charlotte & Wichelns, Dennis, 2010. "Satisfying future water demands for agriculture," Agricultural Water Management, Elsevier, vol. 97(4), pages 502-511, April.
    6. Gong, Binlei, 2020. "Agricultural productivity convergence in China," China Economic Review, Elsevier, vol. 60(C).
    7. George Obeng-Akrofi & Joseph O. Akowuah & Dirk E. Maier & Ahmad Addo, 2021. "Techno-Economic Analysis of a Crossflow Column Dryer for Maize Drying in Ghana," Agriculture, MDPI, vol. 11(6), pages 1-15, June.
    8. Huang, Fung-Mey & Luh, Yir-Hueih, 2009. "The Economic Value of Education in Agricultural Production: A Switching Regression Analysis of Selected East Asian Countries," 2009 Conference, August 16-22, 2009, Beijing, China 50928, International Association of Agricultural Economists.
    9. Vicente, José R., 2004. "Economic Efficiency of Agricultural Production In Brazil," Brazilian Journal of Rural Economy and Sociology (Revista de Economia e Sociologia Rural-RESR), Sociedade Brasileira de Economia e Sociologia Rural, vol. 42(2), pages 1-22, June.
    10. Kutlu, Levent, 2010. "Battese-coelli estimator with endogenous regressors," Economics Letters, Elsevier, vol. 109(2), pages 79-81, November.
    11. Kirtti Ranjan Paltasingh & Phanindra Goyari, 2018. "Impact of farmer education on farm productivity under varying technologies: case of paddy growers in India," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 6(1), pages 1-19, December.
    12. Xie, H., 2018. "Farmers' Response to Winter Wheat Fallow Policy in the Groundwater Funnel Area of China: Case Study of the Hengshui Area, Hebei Province," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277185, International Association of Agricultural Economists.
    13. Zheng, Huifang & Shao, Ruixin & Xue, Yanfang & Ying, Hao & Yin, Yulong & Cui, Zhenling & Yang, QingHua, 2020. "Water productivity of irrigated maize production systems in Northern China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 234(C).
    14. Jianxu Liu & Mengjiao Wang & Li Yang & Sanzidur Rahman & Songsak Sriboonchitta, 2020. "Agricultural Productivity Growth and Its Determinants in South and Southeast Asian Countries," Sustainability, MDPI, vol. 12(12), pages 1-21, June.
    15. Jianxu Liu & Mengjiao Wang & Ji Ma & Sanzidur Rahman & Songsak Sriboonchitta, 2020. "A Simultaneous Stochastic Frontier Model with Dependent Error Components and Dependent Composite Errors: An Application to Chinese Banking Industry," Mathematics, MDPI, vol. 8(2), pages 1-23, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yujie Xie & Xingqiang Wu & Yanling Song & Yini Sun & Kaixuan Tong & Xiaoxuan Yu & Chunlin Fan & Hui Chen, 2022. "Screening of 258 Pesticide Residues in Silage Using Modified QuEChERS with Liquid- and Gas Chromatography-Quadrupole/Orbitrap Mass Spectrometry," Agriculture, MDPI, vol. 12(8), pages 1-21, August.
    2. Xuyang Zhao & Yun Hu & Bing Liang & Guopeng Chen & Liang Feng & Tian Pu & Xin Sun & Taiwen Yong & Weiguo Liu & Jiang Liu & Junbo Du & Feng Yang & Xiaochun Wang & Wenyu Yang, 2023. "Coordination of Density and Nitrogen Fertilization Improves Stalk Lodging Resistance of Strip-Intercropped Maize with Soybeans by Affecting Stalk Quality Traits," Agriculture, MDPI, vol. 13(5), pages 1-13, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kexin Li & Jianxu Liu & Yuting Xue & Sanzidur Rahman & Songsak Sriboonchitta, 2022. "Consequences of Ignoring Dependent Error Components and Heterogeneity in a Stochastic Frontier Model: An Application to Rice Producers in Northern Thailand," Agriculture, MDPI, vol. 12(8), pages 1-17, July.
    2. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    3. Mustafa U. Karakaplan & Levent Kutlu, 2019. "School district consolidation policies: endogenous cost inefficiency and saving reversals," Empirical Economics, Springer, vol. 56(5), pages 1729-1768, May.
    4. Jinkai Li & Jueying Chen & Heguang Liu, 2021. "Sustainable Agricultural Total Factor Productivity and Its Spatial Relationship with Urbanization in China," Sustainability, MDPI, vol. 13(12), pages 1-15, June.
    5. Laure Latruffe & Boris E. Bravo-Ureta & Alain Carpentier & Yann Desjeux & Víctor H. Moreira, 2017. "Subsidies and Technical Efficiency in Agriculture: Evidence from European Dairy Farms," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 99(3), pages 783-799.
    6. Laure Latruffe & Boris E. Bravo-Ureta & Alain Carpentier & Yann Desjeux & Víctor H. Moreira, 2017. "Subsidies and Technical Efficiency in Agriculture: Evidence from European Dairy Farms," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 99(3), pages 783-799.
    7. Jianxu Liu & Mengjiao Wang & Li Yang & Sanzidur Rahman & Songsak Sriboonchitta, 2020. "Agricultural Productivity Growth and Its Determinants in South and Southeast Asian Countries," Sustainability, MDPI, vol. 12(12), pages 1-21, June.
    8. Jianxu Liu & Xiaoqing Li & Shutong Liu & Sanzidur Rahman & Songsak Sriboonchitta, 2022. "Addressing Rural–Urban Income Gap in China through Farmers’ Education and Agricultural Productivity Growth via Mediation and Interaction Effects," Agriculture, MDPI, vol. 12(11), pages 1-23, November.
    9. Lingran Yuan & Shurui Zhang & Shuo Wang & Zesen Qian & Binlei Gong, 2021. "World agricultural convergence," Journal of Productivity Analysis, Springer, vol. 55(2), pages 135-153, April.
    10. Xu, Mengmeng & Tan, Ruipeng & He, Xinju, 2022. "How does economic agglomeration affect energy efficiency in China?: Evidence from endogenous stochastic frontier approach," Energy Economics, Elsevier, vol. 108(C).
    11. Orea, Luis, 2019. "The Econometric Measurement of Firms’ Efficiency," Efficiency Series Papers 2019/02, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    12. Kafando, Wendata A., 2023. "Impacts of Education and the Adoption of Improved Sesame Seeds on Productivity of Sesame Farms in Burkina Faso," African Journal of Economic Review, African Journal of Economic Review, vol. 11(2), March.
    13. Mustafa U. Karakaplan & Levent Kutlu, 2017. "Handling Endogeneity in Stochastic Frontier Analysis," Economics Bulletin, AccessEcon, vol. 37(2), pages 889-901.
    14. Jianxu Liu & Changrui Dong & Shutong Liu & Sanzidur Rahman & Songsak Sriboonchitta, 2020. "Sources of Total-Factor Productivity and Efficiency Changes in China’s Agriculture," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    15. Iskid Jacquet & Jieyong Wang & Jianjun Zhang & Ke Wang & Sen Liang, 2022. "An Understanding of Education in Supporting Cotton Production: An Empirical Study in Benin, West Africa," Agriculture, MDPI, vol. 12(6), pages 1-16, June.
    16. Kutlu, Levent & Tran, Kien C. & Tsionas, Mike G., 2019. "A time-varying true individual effects model with endogenous regressors," Journal of Econometrics, Elsevier, vol. 211(2), pages 539-559.
    17. Bravo-Ureta, Boris E. & Jara-Rojas, Roberto & Lachaud, Michee A. & Moreira L., Victor H. & Scheierling, Susanne M., 2015. "Water and Farm Efficiency: Insights from the Frontier Literature," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 206076, Agricultural and Applied Economics Association.
    18. Dong, Qi & Murakami, Tomoaki & Nakashima, Yasuhiro, 2021. "Induced Bias of Technological Change in Agriculture and Structural Transformation: A Translog Cost Function Analysis of Chinese Cereal Production," 2021 Conference, August 17-31, 2021, Virtual 315373, International Association of Agricultural Economists.
    19. Jintao Zhan & Yubei Ma & Wuyang Hu & Chao Chen & Qinan Lu, 2022. "Enhancing rural income through public agricultural R&D: Spatial spillover and infrastructure thresholds," Review of Development Economics, Wiley Blackwell, vol. 26(2), pages 1083-1107, May.
    20. Andriakopoulos, Konstantinos & Ladas, Augoustinos & Andriakopoulos, Panagiotis, 2020. "Bank efficiency and leasing in U.S.A. banking system," MPRA Paper 112645, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:5:p:649-:d:806234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.