IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v10y2020i8p331-d394871.html
   My bibliography  Save this article

Optimisation of the Resource of Land-Based Livestock Systems to Advance Sustainable Agriculture: A Farm-Level Analysis

Author

Listed:
  • John Rendel

    (AgriSystems and Analytics Ltd., 966 Taieri Mouth Road, RD1, Brighton 9091, New Zealand)

  • Alec Mackay

    (AgResearch, Private Bag 11008, Palmerston North 4442, New Zealand)

  • Paul Smale

    (46 Montague St, Dunedin 9010, New Zealand)

  • Andrew Manderson

    (Landcare Research, Private Bag 11052, Palmerston North 4443, New Zealand)

  • David Scobie

    (AgResearch, Private Bag 4749, Christchurch 8140, New Zealand)

Abstract

Land dedicated to livestock contributes at least 40% of the global agricultural output. While advances in the application of geospatial information systems and remote sensing technologies offer much to agriculture, capturing and using that rich spatial biophysical information is not a feature available in most farm systems models. In this paper, we tackle this gap describing a land-based integrated grazing farm optimisation and resource allocation model (AgInform ® ) that departs from the use of whole farm and average data, to the integration of biological data obtained directly from each of the land units within the farm. The model allows the exploration of the dynamics of biophysical and financial performance of the farm in a steady-state, single-year approach, where the opening and closing values of the biological elements of the farm system conditions must remain the same (e.g., animal numbers, herbage mass), unless otherwise specified. The user supplies pasture growth rates, minimum and maximum acceptable pasture masses for each land management unit (LMU), differential boundary conditions to deliver defined environmental outcomes, animal performance (sheep, beef and deer), farm costs and market prices. The linear programming (LP) equations formed by AgInform ® can be divided into a single objective and constraints (which accommodate the boundaries), including those placed on individual LMUs. The optimization routine uses this information to identify the mix of livestock production enterprises that maximises profit for the business. The model in maintaining the link between available pasture mass and livestock requirements for each LMU throughout all calculations, enables the livestock type and number carried, along with the pasture mass required on each LMU throughout the year to achieve the required animal performance levels to be included as model outputs. A hill land sheep and beef farm consisting of seven distinct LMUs was used as a farm-level case to assess if AgInform ® (1) has sufficient flexibility to integrate biological information from each LMU; (2) could use the specified livestock performance targets to derive a feasible livestock policy that optimised resource use and farm returns; (3) can assign each fortnight animal type and number and herbage mass to each LMU; and (4) can mimic reality to produce credible solutions.

Suggested Citation

  • John Rendel & Alec Mackay & Paul Smale & Andrew Manderson & David Scobie, 2020. "Optimisation of the Resource of Land-Based Livestock Systems to Advance Sustainable Agriculture: A Farm-Level Analysis," Agriculture, MDPI, vol. 10(8), pages 1-23, August.
  • Handle: RePEc:gam:jagris:v:10:y:2020:i:8:p:331-:d:394871
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/10/8/331/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/10/8/331/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. White, T.A. & Snow, V.O. & King, W.McG., 2010. "Intensification of New Zealand beef farming systems," Agricultural Systems, Elsevier, vol. 103(1), pages 21-35, January.
    2. Robertson, Michael J. & Pannell, David J. & Chalak, Morteza, 2012. "Whole-farm models: a review of recent approaches," AFBM Journal, Australasian Farm Business Management Network, vol. 9(2), pages 1-14, December.
    3. Doole, Graeme J. & Romera, Alvaro J., 2013. "Detailed description of grazing systems using nonlinear optimisation methods: A model of a pasture-based New Zealand dairy farm," Agricultural Systems, Elsevier, vol. 122(C), pages 33-41.
    4. Tzemi, Domna & Breen, James, 2019. "Reducing greenhouse gas emissions through the use of urease inhibitors: A farm level analysis," Ecological Modelling, Elsevier, vol. 394(C), pages 18-26.
    5. Graeme J. Doole, 2010. "Evaluating Input Standards for Non‐Point Pollution Control under Firm Heterogeneity," Journal of Agricultural Economics, Wiley Blackwell, vol. 61(3), pages 680-696, September.
    6. Dominati, Estelle & Patterson, Murray & Mackay, Alec, 2010. "A framework for classifying and quantifying the natural capital and ecosystem services of soils," Ecological Economics, Elsevier, vol. 69(9), pages 1858-1868, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Addisu H. Addis & Hugh T. Blair & Paul R. Kenyon & Stephen T. Morris & Nicola M. Schreurs, 2021. "Optimization of Profit for Pasture-Based Beef Cattle and Sheep Farming Using Linear Programming: Model Development and Evaluation," Agriculture, MDPI, vol. 11(6), pages 1-16, June.
    2. Dominati, Estelle J. & Mackay, Alec D. & Rendel, John M. & Wall, Andrew & Norton, David A. & Pannell, Jennifer & Devantier, Brian, 2021. "Farm scale assessment of the impacts of biodiversity enhancement on the financial and environmental performance of mixed livestock farms in New Zealand," Agricultural Systems, Elsevier, vol. 187(C).
    3. Filippo Marchelli & Giorgio Rovero & Massimo Curti & Elisabetta Arato & Barbara Bosio & Cristina Moliner, 2021. "An Integrated Approach to Convert Lignocellulosic and Wool Residues into Balanced Fertilisers," Energies, MDPI, vol. 14(2), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Koch & Alex McBratney & Mark Adams & Damien Field & Robert Hill & John Crawford & Budiman Minasny & Rattan Lal & Lynette Abbott & Anthony O'Donnell & Denis Angers & Jeffrey Baldock & Edward Bar, 2013. "Soil Security: Solving the Global Soil Crisis," Global Policy, London School of Economics and Political Science, vol. 4(4), pages 434-441, November.
    2. Schon, N.L. & Dominati, E.J., 2020. "Valuing earthworm contribution to ecosystem services delivery," Ecosystem Services, Elsevier, vol. 43(C).
    3. Doole, Graeme J. & Romera, Alvaro J., 2014. "Implications of a nitrogen leaching efficiency metric for pasture-based dairy farms," Agricultural Water Management, Elsevier, vol. 142(C), pages 10-18.
    4. Jónsson, Jón Örvar G. & Davíðsdóttir, Brynhildur & Nikolaidis, Nikolaos P. & Giannakis, Georgios V., 2019. "Tools for Sustainable Soil Management: Soil Ecosystem Services, EROI and Economic Analysis," Ecological Economics, Elsevier, vol. 157(C), pages 109-119.
    5. Livia Marchetti & Valentina Cattivelli & Claudia Cocozza & Fabio Salbitano & Marco Marchetti, 2020. "Beyond Sustainability in Food Systems: Perspectives from Agroecology and Social Innovation," Sustainability, MDPI, vol. 12(18), pages 1-24, September.
    6. Duy X. Tran & Diane Pearson & Alan Palmer & David Gray, 2020. "Developing a Landscape Design Approach for the Sustainable Land Management of Hill Country Farms in New Zealand," Land, MDPI, vol. 9(6), pages 1-29, June.
    7. Stephen C. L. Watson & Adrian C. Newton, 2018. "Dependency of Businesses on Flows of Ecosystem Services: A Case Study from the County of Dorset, UK," Sustainability, MDPI, vol. 10(5), pages 1-14, April.
    8. Samaneh Sadat Nickayin & Francesca Perrone & Barbara Ermini & Giovanni Quaranta & Rosanna Salvia & Filippo Gambella & Gianluca Egidi, 2021. "Soil Quality and Peri-Urban Expansion of Cities: A Mediterranean Experience (Athens, Greece)," Sustainability, MDPI, vol. 13(4), pages 1-12, February.
    9. Tang, Kai & Hailu, Atakelty & Kragt, Marit E. & Ma, Chunbo, 2018. "The response of broadacre mixed crop-livestock farmers to agricultural greenhouse gas abatement incentives," Agricultural Systems, Elsevier, vol. 160(C), pages 11-20.
    10. Antoine Vialle & Mario Giampieri, 2020. "Mapping Urbanization as an Anthropedogenetic Process: A Section through the Times of Urban Soils," Urban Planning, Cogitatio Press, vol. 5(2), pages 262-279.
    11. Bonnin, Dennis & Tabacco, Ernesto & Borreani, Giorgio, 2021. "Variability of greenhouse gas emissions and economic performances on 10 Piedmontese beef farms in North Italy," Agricultural Systems, Elsevier, vol. 194(C).
    12. Beardmore, Leslie & Heagney, Elizabeth & Sullivan, Caroline A., 2019. "Complementary land use in the Richmond River catchment: Evaluating economic and environmental benefits," Land Use Policy, Elsevier, vol. 87(C).
    13. Veronica Manganiello & Alessandro Banterle & Gabriele Canali & Geremia Gios & Giacomo Branca & Sofia Galeotti & Fabrizio De Filippis & Raffaella Zucaro, 2021. "Economic characterization of irrigated and livestock farms in The Po River Basin District," Economia agro-alimentare, FrancoAngeli Editore, vol. 23(3), pages 1-24.
    14. Quatrini, Simone, 2021. "Challenges and opportunities to scale up sustainable finance after the COVID-19 crisis: Lessons and promising innovations from science and practice," Ecosystem Services, Elsevier, vol. 48(C).
    15. Philip Kostov & Sophia Davidova, 2023. "Smallholders Are Not the Same: Under the Hood of Kosovo Agriculture," Land, MDPI, vol. 12(1), pages 1-16, January.
    16. Gauri Shankar Gupta, 2019. "Land Degradation and Challenges of Food Security," Review of European Studies, Canadian Center of Science and Education, vol. 11(1), pages 1-63, December.
    17. Daniel Toth & Jaroslava Janků & Adéla Marie Marhoul & Josef Kozák & Mansoor Maitah & Jan Jehlička & Lukáš Řeháček & Richard Přikryl & Tomáš Herza & Jan Vopravil & David Kincl & Tomáš Khel, 2023. "Soil quality assessment using SAS (Soil Assessment System)," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 18(1), pages 1-15.
    18. Fielke, Simon J. & Kaye-Blake, William & Mackay, Alec & Smith, Willie & Rendel, John & Dominati, Estelle, 2018. "Learning from resilience research: Findings from four projects in New Zealand," Land Use Policy, Elsevier, vol. 70(C), pages 322-333.
    19. Xinyu Ouyang & Xiangyu Luo, 2022. "Models for Assessing Urban Ecosystem Services: Status and Outlooks," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
    20. Brady, Mark & Hedlund, Katarina & Cong, Rong-Gang & Hemerik, Lia & Hotes, Stefan & Machado, Stephen & Mattsson, Lennart & Schulz, Elke & Thomsen, Ingrid K., 2015. "Valuing Supporting Soil Ecosystem Services in Agriculture: a Natural Capital Approach," MPRA Paper 112303, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:10:y:2020:i:8:p:331-:d:394871. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.