IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v10y2020i3p59-d327322.html
   My bibliography  Save this article

Responses of Yield and Protein Composition of Wheat to Climate Change

Author

Listed:
  • Benyoh Emmanuel Kigha Nsafon

    (Department of Climate Change, College of Engineering, Kyungpook National University, 41566 Daegu, Korea)

  • Sang-Chul Lee

    (College of Agriculture and Life Sciences, School of Applied Biosciences, Kyungpook National University, 41566 Daegu, Korea)

  • Jeung-Soo Huh

    (Department of Climate Change, College of Engineering, Kyungpook National University, 41566 Daegu, Korea)

Abstract

Global wheat demand is expected to continue to increase due to the projected increase in the World’s population but regrettably, wheat yield is expected to decrease due to the progressively changing climate. Although the effects of temperature, soil moisture and nutrient absorption on the yield of wheat have been studied extensively to address the threats posed by climate change on food security, the combined effects of these factors have been studied to a lesser extent. This study thus aims to investigate the interactive effects of different regimes of fertilizer and soil moisture on the yield and amino acid composition of wheat. Twelve treatments under different regimens of soil moisture and fertilizer, replicated ten times in a randomized block design were considered in the greenhouse and in the field. The study reveals that variation in each factor had a significant effect on wheat but soil moisture was the principal factor controlling yield and protein accumulation. Application of organic fertilizer to wheat increased amino acid accumulation when the average temperature was at 18 °C, with minimum temperature ( T min) and maximum temperature ( T max) of −6 °C and 42 °C respectively. However, application of inorganic fertilizer to wheat enhanced amino acid accumulation when the average daily temperature was at 8 °C, with T min and T max of −10 °C and 26 °C respectively. Our results also show that a decrease in soil moisture from 100% to 30% in the greenhouse improved the quantity of amino acid in the grain by 26.4% and 56.8% for organic and inorganic treatments respectively. Also, grain amino acid concentration increased by 16.6% and 4.76% when soil moisture dropped from 100% to 30% for the organic and inorganic treatments in the field respectively.

Suggested Citation

  • Benyoh Emmanuel Kigha Nsafon & Sang-Chul Lee & Jeung-Soo Huh, 2020. "Responses of Yield and Protein Composition of Wheat to Climate Change," Agriculture, MDPI, vol. 10(3), pages 1-13, March.
  • Handle: RePEc:gam:jagris:v:10:y:2020:i:3:p:59-:d:327322
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/10/3/59/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/10/3/59/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huang, Mingbin & Dang, Tinghui & Gallichand, Jacques & Goulet, Monique, 2003. "Effect of increased fertilizer applications to wheat crop on soil-water depletion in the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 58(3), pages 267-278, February.
    2. Dim Coumou & Stefan Rahmstorf, 2012. "A decade of weather extremes," Nature Climate Change, Nature, vol. 2(7), pages 491-496, July.
    3. Xue Wang & Xiubin Li, 2018. "Irrigation Water Availability and Winter Wheat Abandonment in the North China Plain (NCP): Findings from a Case Study in Cangxian County of Hebei Province," Sustainability, MDPI, vol. 10(2), pages 1-16, January.
    4. Dengpan Xiao & Huizi Bai & De Li Liu, 2018. "Impact of Future Climate Change on Wheat Production: A Simulated Case for China’s Wheat System," Sustainability, MDPI, vol. 10(4), pages 1-15, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harris D. Ledvinka & Mehdi Toghyani & Daniel K. Y. Tan & Ali Khoddami & Ian D. Godwin & Sonia Y. Liu, 2022. "The Impact of Drought, Heat and Elevated Carbon Dioxide Levels on Feed Grain Quality for Poultry Production," Agriculture, MDPI, vol. 12(11), pages 1-16, November.
    2. Tinghui Wu & Jian Yu & Jingxia Lu & Xiuguo Zou & Wentian Zhang, 2020. "Research on Inversion Model of Cultivated Soil Moisture Content Based on Hyperspectral Imaging Analysis," Agriculture, MDPI, vol. 10(7), pages 1-14, July.
    3. Zhilu Sun & Teng Fu, 2022. "The Evolutionary Trends and Convergence of Cereal Yield in Europe and Central Asia," Agriculture, MDPI, vol. 12(7), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaustubh Salvi & Subimal Ghosh, 2016. "Projections of Extreme Dry and Wet Spells in the 21st Century India Using Stationary and Non-stationary Standardized Precipitation Indices," Climatic Change, Springer, vol. 139(3), pages 667-681, December.
    2. Barton, Madeleine G. & Terblanche, John S. & Sinclair, Brent J., 2019. "Incorporating temperature and precipitation extremes into process-based models of African lepidoptera changes the predicted distribution under climate change," Ecological Modelling, Elsevier, vol. 394(C), pages 53-65.
    3. Claudio Morana & Giacomo Sbrana, 2017. "Temperature Anomalies, Radiative Forcing and ENSO," Working Papers 2017.09, Fondazione Eni Enrico Mattei.
    4. Weixing Ma & Tinglin Huang & Xuan Li & Zizhen Zhou & Yang Li & Kang Zeng, 2015. "The Effects of Storm Runoff on Water Quality and the Coping Strategy of a Deep Canyon-Shaped Source Water Reservoir in China," IJERPH, MDPI, vol. 12(7), pages 1-17, July.
    5. Cotto, Olivier & Chevin, Luis-Miguel, 2020. "Fluctuations in lifetime selection in an autocorrelated environment," Theoretical Population Biology, Elsevier, vol. 134(C), pages 119-128.
    6. Rashid, Muhammad Adil & Jabloun, Mohamed & Andersen, Mathias Neumann & Zhang, Xiying & Olesen, Jørgen Eivind, 2019. "Climate change is expected to increase yield and water use efficiency of wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 222(C), pages 193-203.
    7. Zbigniew W. Kundzewicz & Adam Choryński & Janusz Olejnik & Hans J. Schellnhuber & Marek Urbaniak & Klaudia Ziemblińska, 2023. "Climate Change Science and Policy—A Guided Tour across the Space of Attitudes and Outcomes," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    8. Maaz Gardezi & J. Gordon Arbuckle, 2019. "Spatially Representing Vulnerability to Extreme Rain Events Using Midwestern Farmers’ Objective and Perceived Attributes of Adaptive Capacity," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 17-34, January.
    9. Kristie S. Gutierrez & Catherine E. LePrevost, 2016. "Climate Justice in Rural Southeastern United States: A Review of Climate Change Impacts and Effects on Human Health," IJERPH, MDPI, vol. 13(2), pages 1-21, February.
    10. Maëlle Lefeuvre & ChuChu Lu & Carlos A Botero & Joanna Rutkowska, 2023. "Variable ambient temperature promotes song learning and production in zebra finches," Behavioral Ecology, International Society for Behavioral Ecology, vol. 34(3), pages 408-417.
    11. Samuel A. Markolf & Kelly Klima & Terrence L. Wong, 2015. "Adaptation frameworks used by US decision-makers: a literature review," Environment Systems and Decisions, Springer, vol. 35(4), pages 427-436, December.
    12. Austin Becker & Michele Acciaro & Regina Asariotis & Edgard Cabrera & Laurent Cretegny & Philippe Crist & Miguel Esteban & Andrew Mather & Steve Messner & Susumu Naruse & Adolf Ng & Stefan Rahmstorf &, 2013. "A note on climate change adaptation for seaports: a challenge for global ports, a challenge for global society," Climatic Change, Springer, vol. 120(4), pages 683-695, October.
    13. Mercedes Campi & Marco Duenas & Giorgio Fagiolo, 2019. "How do countries specialize in food production? A complex-network analysis of the global agricultural product space," LEM Papers Series 2019/37, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    14. Svanidze, Miranda & Götz, Linde, 2019. "Spatial market efficiency of grain markets in Russia: Implications of high trade costs for export potential," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 21, pages 60-68.
    15. EKPO, C. G. and HARUNA, I. O., 2022. "Assessment of Awareness of Climate Change Among Subsistent Farmers in Gwagwalada Area Council, Abuja," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 6(7), pages 275-282, July.
    16. Xin-Feng Wei & Wei Yang & Mikael S. Hedenqvist, 2024. "Plastic pollution amplified by a warming climate," Nature Communications, Nature, vol. 15(1), pages 1-3, December.
    17. Margot Hill Clarvis & Erin Bohensky & Masaru Yarime, 2015. "Can Resilience Thinking Inform Resilience Investments? Learning from Resilience Principles for Disaster Risk Reduction," Sustainability, MDPI, vol. 7(7), pages 1-19, July.
    18. Baoling Zou & Zanjie Ren & Ashok K. Mishra & Stefan Hirsch, 2022. "The role of agricultural insurance in boosting agricultural output: An aggregate analysis from Chinese provinces," Agribusiness, John Wiley & Sons, Ltd., vol. 38(4), pages 923-945, October.
    19. Wei Xie & Qi Cui & Tariq Ali, 2019. "Role of market agents in mitigating the climate change effects on food economy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1215-1231, December.
    20. Tassadit Kourat & Dalila Smadhi & Brahim Mouhouche & Nerdjes Gourari & M. G. Mostofa Amin & Christopher Robin Bryant, 2021. "Assessment of future climate change impact on rainfed wheat yield in the semi-arid Eastern High Plain of Algeria using a crop model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2175-2203, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:10:y:2020:i:3:p:59-:d:327322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.