IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i11p1913-d971839.html
   My bibliography  Save this article

The Impact of Drought, Heat and Elevated Carbon Dioxide Levels on Feed Grain Quality for Poultry Production

Author

Listed:
  • Harris D. Ledvinka

    (School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia)

  • Mehdi Toghyani

    (School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
    Poultry Research Foundation, The University of Sydney, Sydney, NSW 2570, Australia)

  • Daniel K. Y. Tan

    (School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia)

  • Ali Khoddami

    (School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia)

  • Ian D. Godwin

    (School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia)

  • Sonia Y. Liu

    (School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
    Poultry Research Foundation, The University of Sydney, Sydney, NSW 2570, Australia)

Abstract

Climate change has wide-reaching consequences for agriculture by altering both the yield and nutritional composition of grains. This poses a significant challenge for the poultry industry which relies on large quantities of high-quality feed grains to support meat and egg production. The existing literature shows that elevated atmospheric carbon dioxide concentrations (eCO 2 ), heat and drought overall reduce grain yield and quality. However, these results are inconsistent, with some studies reporting small or large decreases and others even indicating potential improvements. These variations may occur because many studies only investigate one climate factor at a time, without considering interactions between factors. Additionally, most studies investigate just one grain type, rather than comparing grains and their morphophysiological differences. The present review offers a novel approach by investigating how eCO 2 , heat and drought interactively affect both the yield and nutritional composition of four key animal feed grains: wheat ( Triticum aestivum L.), barley ( Hordeum vulgare L.), maize ( Zea mays L.) and sorghum ( Sorghum bicolour L. Moench). The photosynthetic pathway is a key determinant of a plant’s response to climate factors, so this review compares grains with both C 3 photosynthesis (wheat and barley) and C 4 photosynthesis (maize and sorghum). The present review found that eCO 2 may promote starch synthesis in C 3 grains of wheat and barley, thereby improving grain yield but diluting protein, lipid, vitamin and mineral concentrations. This potential yield improvement is further counteracted by heat and drought which limit the photosynthetic rate. Unlike wheat and barley, C 4 photosynthesis is not CO 2 -limited, so neither the yield nor the nutritional quality of maize and sorghum are significantly affected by eCO 2 . On the other hand, heat stress and drought reduce photosynthesis in maize and sorghum and may offer minimal increases in nutrient concentrations. This review highlights that while eCO 2 may increase the yield of wheat and barley grains, this effect (i) dilutes nutrient concentration, (ii) is counteracted by heat and drought, and (iii) does not benefit C 4 grains maize and sorghum. An additional novel insight is offered by discussing how the impacts of climate change on animal feed production may be mitigated using alternative crop management practices, plant breeding, feed processing and enzyme supplementation.

Suggested Citation

  • Harris D. Ledvinka & Mehdi Toghyani & Daniel K. Y. Tan & Ali Khoddami & Ian D. Godwin & Sonia Y. Liu, 2022. "The Impact of Drought, Heat and Elevated Carbon Dioxide Levels on Feed Grain Quality for Poultry Production," Agriculture, MDPI, vol. 12(11), pages 1-16, November.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:11:p:1913-:d:971839
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/11/1913/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/11/1913/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Benyoh Emmanuel Kigha Nsafon & Sang-Chul Lee & Jeung-Soo Huh, 2020. "Responses of Yield and Protein Composition of Wheat to Climate Change," Agriculture, MDPI, vol. 10(3), pages 1-13, March.
    2. Samuel S. Myers & Antonella Zanobetti & Itai Kloog & Peter Huybers & Andrew D. B. Leakey & Arnold J. Bloom & Eli Carlisle & Lee H. Dietterich & Glenn Fitzgerald & Toshihiro Hasegawa & N. Michele Holbr, 2014. "Increasing CO2 threatens human nutrition," Nature, Nature, vol. 510(7503), pages 139-142, June.
    3. Sonia Y. Liu & Glen Fox & Ali Khoddami & Karlie A. Neilson & Ha H. Truong & Amy F. Moss & Peter H. Selle, 2015. "Grain Sorghum: A Conundrum for Chicken-Meat Production," Agriculture, MDPI, vol. 5(4), pages 1-28, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raissa Sorgho & Isabel Mank & Moubassira Kagoné & Aurélia Souares & Ina Danquah & Rainer Sauerborn, 2020. "“We Will Always Ask Ourselves the Question of How to Feed the Family”: Subsistence Farmers’ Perceptions on Adaptation to Climate Change in Burkina Faso," IJERPH, MDPI, vol. 17(19), pages 1-25, October.
    2. Daniel P. Roberts & Autar K. Mattoo, 2018. "Sustainable Agriculture—Enhancing Environmental Benefits, Food Nutritional Quality and Building Crop Resilience to Abiotic and Biotic Stresses," Agriculture, MDPI, vol. 8(1), pages 1-24, January.
    3. Gerald Nelson & Jessica Bogard & Keith Lividini & Joanne Arsenault & Malcolm Riley & Timothy B. Sulser & Daniel Mason-D’Croz & Brendan Power & David Gustafson & Mario Herrero & Keith Wiebe & Karen Coo, 2018. "Income growth and climate change effects on global nutrition security to mid-century," Nature Sustainability, Nature, vol. 1(12), pages 773-781, December.
    4. Anna Yusa & Peter Berry & June J.Cheng & Nicholas Ogden & Barrie Bonsal & Ronald Stewart & Ruth Waldick, 2015. "Climate Change, Drought and Human Health in Canada," IJERPH, MDPI, vol. 12(7), pages 1-54, July.
    5. Menconi, M.E. & Giordano, S. & Grohmann, D., 2022. "Revisiting global food production and consumption patterns by developing resilient food systems for local communities," Land Use Policy, Elsevier, vol. 119(C).
    6. Xie, Heping & Liu, Tao & Wang, Yufei & Wu, Yifan & Wang, Fuhuan & Tang, Liang & Jiang, Wen & Liang, Bin, 2017. "Enhancement of electricity generation in CO2 mineralization cell by using sodium sulfate as the reaction medium," Applied Energy, Elsevier, vol. 195(C), pages 991-999.
    7. Paul R. Ehrlich & John Harte, 2018. "Pessimism on the Food Front," Sustainability, MDPI, vol. 10(4), pages 1-5, April.
    8. Catarina D. Melo & Cristiana S. A. M. Maduro Dias & Sophie Wallon & Alfredo E. S. Borba & João Madruga & Paulo A. V. Borges & Maria T. Ferreira & Rui B. Elias, 2022. "Influence of Climate Variability and Soil Fertility on the Forage Quality and Productivity in Azorean Pastures," Agriculture, MDPI, vol. 12(3), pages 1-18, March.
    9. Sabina Thaler & Herbert Formayer & Gerhard Kubu & Miroslav Trnka & Josef Eitzinger, 2021. "Effects of Bias-Corrected Regional Climate Projections and Their Spatial Resolutions on Crop Model Results under Different Climatic and Soil Conditions in Austria," Agriculture, MDPI, vol. 11(11), pages 1-39, October.
    10. Prabhu Pingali & Anaka Aiyar & Mathew Abraham & Andaleeb Rahman, 2019. "Transforming Food Systems for a Rising India," Palgrave Studies in Agricultural Economics and Food Policy, Palgrave Macmillan, number 978-3-030-14409-8, December.
    11. Xie, Heping & Gao, Xiaolin & Liu, Tao & Chen, Bin & Wu, Yifan & Jiang, Wenchuan, 2020. "Electricity generation by a novel CO2 mineralization cell based on organic proton-coupled electron transfer," Applied Energy, Elsevier, vol. 261(C).
    12. Tammi, Ilpo & Mustajärvi, Kaisa & Rasinmäki, Jussi, 2017. "Integrating spatial valuation of ecosystem services into regional planning and development," Ecosystem Services, Elsevier, vol. 26(PB), pages 329-344.
    13. Vivek Sharma & Mukesh Choudhary & Pawan Kumar & Jeet Ram Choudhary & Jaswant S. Khokhar & Prashant Kaushik & Srinivas Goli, 2021. "Harnessing the Wild Relatives and Landraces for Fe and Zn Biofortification in Wheat through Genetic Interventions—A Review," Sustainability, MDPI, vol. 13(23), pages 1-15, November.
    14. Andrisa Balbinot & Anderson da Rosa Feijó & Marcus Vinicius Fipke & Dalvane Rockenbach & Joseph Harry Massey & Edinalvo Rabaioli Camargo & Marcia Foster Mesko & Priscila Tessmer Scaglioni & Luis Anton, 2021. "Effects of Elevated Atmospheric CO 2 Concentration and Water Regime on Rice Yield, Water Use Efficiency, and Arsenic and Cadmium Accumulation in Grain," Agriculture, MDPI, vol. 11(8), pages 1-13, July.
    15. Hla Hla Ei & Tengda Zheng & Muhammad Umer Farooq & Rui Zeng & Yang Su & Xin Huang & Yujie Zhang & Yuanke Liang & Zhichen Tang & Xiaoying Ye & Xiaomei Jia & Jianqing Zhu, 2019. "Evaluation on Zinc and Selenium Nutrients in Polished Rice of Rice Genotypes Under Zinc Biofortification," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 21(5), pages 16205-16213, October.
    16. Hemalatha Palanivel & Shipra Shah, 2021. "Unlocking the inherent potential of plant genetic resources: food security and climate adaptation strategy in Fiji and the Pacific," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14264-14323, October.
    17. Gurdeep Singh Malhi & Manpreet Kaur & Prashant Kaushik, 2021. "Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review," Sustainability, MDPI, vol. 13(3), pages 1-21, January.
    18. Huanhuan Zhou & Ning Cao & Lihua Yang & Jianjun Xu, 2024. "Multi-Dimensional Impacts of Climate Change on China’s Food Security during 2002–2021," Sustainability, MDPI, vol. 16(7), pages 1-24, March.
    19. Hoffmann, Farina & Koellner, Thomas & Kastner, Thomas, 2021. "The micronutrient content of the European Union's agricultural trade," Ecological Economics, Elsevier, vol. 188(C).
    20. John L. Fiedler & Keith Lividini, 2017. "Monitoring population diet quality and nutrition status with household consumption and expenditure surveys: suggestions for a Bangladesh baseline," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(1), pages 63-88, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:11:p:1913-:d:971839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.