IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v25y2020i2d10.1007_s11027-019-09874-5.html
   My bibliography  Save this article

Assessment of the climate change adaptation capacity of urban agglomerations in China

Author

Listed:
  • Chunli Zhao

    (Tsinghua University
    Tsinghua University
    Beijing Key Laboratory of City Integrated Emergency Response Science)

  • Jianguo Chen

    (Tsinghua University
    Tsinghua University
    Beijing Key Laboratory of City Integrated Emergency Response Science)

  • Guofeng Su

    (Tsinghua University
    Tsinghua University)

  • Hongyong Yuan

    (Tsinghua University
    Tsinghua University)

Abstract

Complex urban ecosystems are relatively fragile in the context of climate change. Given this fragility and the large numbers of urban inhabitants, it is important for researchers and government regulators to assess the adaptation capacity of urban areas with respect to climate change. Currently, there are few studies that have evaluated such adaptation capacity across different regions and periods. In this study, a framework and method are established to assess the adaptation capacity of Chinese cities and urban agglomerations (UAs) with respect to climate change by integrating an SPRR (Source, Pathway, Receptor, Response) model with the Intergovernmental Panel on Climate Change (IPCC) assessment framework. We develop an indicator system for exposure, sensitivity, and resilience and use the set pair analysis (SPA) method to evaluate the adaptation capacity of 12 typical UAs in China. Results show that (1) adaptation capacity levels show wide variation across China, with the majority of cities and UAs having either high or low levels of capacity and a minority having a moderate level of capacity; (2) inland UAs have low adaptation capacity because of low resilience and sensitivity, whereas eastern coastal UAs have high adaptation capacity, for their high resilience and sensitivity; and (3) higher climate change exposures are distributed predominantly in central China. A pronounced economic disparity exists between western inland regions and eastern regions, with the latter having higher levels of economic development and superior infrastructure. The regional economic inequalities and spatial variation in climate variability observed in China are also characteristics shared by many other countries and regions, suggesting that our results may be generalised to other countries and regions. We propose that underdeveloped regions should seek to improve infrastructure and funding directed towards improving adaptation capacity, whereas developed regions should improve their ability to monitor climate change and its impacts.

Suggested Citation

  • Chunli Zhao & Jianguo Chen & Guofeng Su & Hongyong Yuan, 2020. "Assessment of the climate change adaptation capacity of urban agglomerations in China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(2), pages 221-236, February.
  • Handle: RePEc:spr:masfgc:v:25:y:2020:i:2:d:10.1007_s11027-019-09874-5
    DOI: 10.1007/s11027-019-09874-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-019-09874-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-019-09874-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark Richardson & Kevin Cowtan & Ed Hawkins & Martin B. Stolpe, 2016. "Reconciled climate response estimates from climate models and the energy budget of Earth," Nature Climate Change, Nature, vol. 6(10), pages 931-935, October.
    2. Araos, Malcolm & Berrang-Ford, Lea & Ford, James D. & Austin, Stephanie E. & Biesbroek, Robbert & Lesnikowski, Alexandra, 2016. "Climate change adaptation planning in large cities: A systematic global assessment," Environmental Science & Policy, Elsevier, vol. 66(C), pages 375-382.
    3. Liuhua Shi & Itai Kloog & Antonella Zanobetti & Pengfei Liu & Joel D. Schwartz, 2015. "Impacts of temperature and its variability on mortality in New England," Nature Climate Change, Nature, vol. 5(11), pages 988-991, November.
    4. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2012. "Temperature Shocks and Economic Growth: Evidence from the Last Half Century," American Economic Journal: Macroeconomics, American Economic Association, vol. 4(3), pages 66-95, July.
    5. Samuel S. Myers & Antonella Zanobetti & Itai Kloog & Peter Huybers & Andrew D. B. Leakey & Arnold J. Bloom & Eli Carlisle & Lee H. Dietterich & Glenn Fitzgerald & Toshihiro Hasegawa & N. Michele Holbr, 2014. "Increasing CO2 threatens human nutrition," Nature, Nature, vol. 510(7503), pages 139-142, June.
    6. E. M. Fischer & R. Knutti, 2015. "Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes," Nature Climate Change, Nature, vol. 5(6), pages 560-564, June.
    7. Arief Anshory Yusuf & Herminia Francisco, 2009. "Climate Change Vulnerability Mapping for Southeast Asia," EEPSEA Special and Technical Paper tp200901s1, Economy and Environment Program for Southeast Asia (EEPSEA), revised Jan 2009.
    8. Susan L. Cutter & Bryan J. Boruff & W. Lynn Shirley, 2003. "Social Vulnerability to Environmental Hazards," Social Science Quarterly, Southwestern Social Science Association, vol. 84(2), pages 242-261, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaodong Pei & Jing Wu & Junbo Xue & Jincai Zhao & Changxin Liu & Yuan Tian, 2022. "Assessment of Cities’ Adaptation to Climate Change and Its Relationship with Urbanization in China," Sustainability, MDPI, vol. 14(4), pages 1-26, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Glwadys A. Gbetibouo & Claudia Ringler & Rashid Hassan, 2010. "Vulnerability of the South African farming sector to climate change and variability: An indicator approach," Natural Resources Forum, Blackwell Publishing, vol. 34(3), pages 175-187, August.
    2. S. Balica & N. Wright & F. Meulen, 2012. "A flood vulnerability index for coastal cities and its use in assessing climate change impacts," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 73-105, October.
    3. Joseph C Avery, 2019. "Public Health: Effects of Climate Change and Socioeconomic Factors in Hawai'i," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 17(5), pages 13060-13063, May.
    4. Xuchao Yang & Lin Lin & Yizhe Zhang & Tingting Ye & Qian Chen & Cheng Jin & Guanqiong Ye, 2019. "Spatially Explicit Assessment of Social Vulnerability in Coastal China," Sustainability, MDPI, vol. 11(18), pages 1-20, September.
    5. Ognjen Žurovec & Sabrija Čadro & Bishal Kumar Sitaula, 2017. "Quantitative Assessment of Vulnerability to Climate Change in Rural Municipalities of Bosnia and Herzegovina," Sustainability, MDPI, vol. 9(7), pages 1-18, July.
    6. Ruby W. Grantham & Murray A. Rudd, 2017. "Household susceptibility to hydrological change in the Lower Mekong Basin," Natural Resources Forum, Blackwell Publishing, vol. 41(1), pages 3-17, February.
    7. Chunli Zhao & Jianguo Chen & Peng Du & Hongyong Yuan, 2018. "Characteristics of Climate Change and Extreme Weather from 1951 to 2011 in China," IJERPH, MDPI, vol. 15(11), pages 1-13, November.
    8. Prabhu Pingali & Anaka Aiyar & Mathew Abraham & Andaleeb Rahman, 2019. "Transforming Food Systems for a Rising India," Palgrave Studies in Agricultural Economics and Food Policy, Palgrave Macmillan, number 978-3-030-14409-8, June.
    9. Nick Obradovich, 2017. "Climate change may speed democratic turnover," Climatic Change, Springer, vol. 140(2), pages 135-147, January.
    10. Colette, April L., 2016. "The politics of framing risk: Minding the vulnerability gap in climate change research," World Development Perspectives, Elsevier, vol. 1(C), pages 43-48.
    11. Yi Yang & Beibei Liu & Peng Wang & Wei‐Qiang Chen & Timothy M. Smith, 2020. "Toward sustainable climate change adaptation," Journal of Industrial Ecology, Yale University, vol. 24(2), pages 318-330, April.
    12. Alex de Sherbinin & Guillem Bardy, 2015. "Social vulnerability to floods in two coastal megacities: New York City and Mumbai," Vienna Yearbook of Population Research, Vienna Institute of Demography (VID) of the Austrian Academy of Sciences in Vienna, vol. 13(1), pages 131-165.
    13. Isabel Hovdahl, 2020. "Deadly Variation: The Effect of Temperature Variability on Mortality," Working Papers No 01/2020, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    14. Joaquín Bernal-Ramírez & Jair Ojeda-Joya & Camila Agudelo-Rivera & Felipe Clavijo-Ramírez & Carolina Durana-Ángel & Clark Granger-Castaño & Daniel Osorio-Rodríguez & Daniel Parra-Amado & José Pulido &, 2022. "Impacto macroeconómico del cambio climático en Colombia," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, issue 102, pages 1-62, July.
    15. Yi Peng, 2015. "Regional earthquake vulnerability assessment using a combination of MCDM methods," Annals of Operations Research, Springer, vol. 234(1), pages 95-110, November.
    16. Hausman, Catherine & Stolper, Samuel, 2021. "Inequality, information failures, and air pollution," Journal of Environmental Economics and Management, Elsevier, vol. 110(C).
    17. Meryl Jagarnath & Tirusha Thambiran & Michael Gebreslasie, 2020. "Heat stress risk and vulnerability under climate change in Durban metropolitan, South Africa—identifying urban planning priorities for adaptation," Climatic Change, Springer, vol. 163(2), pages 807-829, November.
    18. Yongdeng Lei & Jing’ai Wang & Yaojie Yue & Hongjian Zhou & Weixia Yin, 2014. "Rethinking the relationships of vulnerability, resilience, and adaptation from a disaster risk perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 609-627, January.
    19. Mueller, Hannes & Rauh, Christopher, 2018. "Reading Between the Lines: Prediction of Political Violence Using Newspaper Text," American Political Science Review, Cambridge University Press, vol. 112(2), pages 358-375, May.
    20. Pujun Liang & Wei Xu & Yunjia Ma & Xiujuan Zhao & Lianjie Qin, 2017. "Increase of Elderly Population in the Rainstorm Hazard Areas of China," IJERPH, MDPI, vol. 14(9), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:25:y:2020:i:2:d:10.1007_s11027-019-09874-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.