IDEAS home Printed from https://ideas.repec.org/a/gai/rpaper/53.html
   My bibliography  Save this article

Methodological Basis for Organization and Analytical Capacity of Business Surveys in Russian Industry

Author

Listed:
  • Sergey Tsukhlo

    (Gaidar Institute for Economic Policy)

Abstract

This publication presents analysis of handling regular business surveys of Russian industrial enterprises, information capacity of such surveys and analytical findings. Analysis summarizes 18 years experience of IEP’s surveys: from the choice of envelopes for sending questionnaires to obtained findings analysis and the development European harmonized survey program. The author gives examples of the use of the IEP business surveys’ findings in day-to-day monitoring of Russian industry, analysis of labor issues and evaluation of labor productivity.

Suggested Citation

  • Sergey Tsukhlo, 2010. "Methodological Basis for Organization and Analytical Capacity of Business Surveys in Russian Industry," Research Paper Series, Gaidar Institute for Economic Policy, issue 145P.
  • Handle: RePEc:gai:rpaper:53
    as

    Download full text from publisher

    File URL: http://www.iep.ru/files/RePEc/gai/rpaper/53Tsukhlo.pdf
    File Function: Revised version, 2012
    Download Restriction: no

    References listed on IDEAS

    as
    1. Stangl, Anna, 2009. "Essays on the Measurement of Economic Expectations," Munich Dissertations in Economics 9823, University of Munich, Department of Economics.
    2. Kawasaki, Seiichi & McMillan, John & Zimmermann, Klaus F, 1982. "Disequilibrium Dynamics: An Empirical Study," American Economic Review, American Economic Association, vol. 72(5), pages 992-1004, December.
    3. Konig, Heinz & Nerlove, Marc & Oudiz, Gilles, 1981. "On the formation of price expectations : An analysis of business test data by log-linear probability models," European Economic Review, Elsevier, vol. 16(1), pages 103-138.
    4. Pesaran, M Hashem, 1985. "Formation of Inflation Expectations in British Manufacturing Industries," Economic Journal, Royal Economic Society, vol. 95(380), pages 948-975, December.
    5. Nerlove, Marc, 1983. "Expectations, Plans, and Realizations in Theory and Practice," Econometrica, Econometric Society, vol. 51(5), pages 1251-1279, September.
    6. Wolfgang Ruppert, 2007. "Business Survey in Manufacturing," Chapters, in: Georg Goldrian (ed.),Handbook of Survey-Based Business Cycle Analysis, chapter 2, Edward Elgar Publishing.
    7. Carlson, John A & Parkin, J Michael, 1975. "Inflation Expectations," Economica, London School of Economics and Political Science, vol. 42(166), pages 123-138, May.
    8. Dr Martin Weale & Dr. James Mitchell, 2002. "Aggregate versus Disaggregate Survey-Based Indicators of Economic Activity (revised January 2005)," National Institute of Economic and Social Research (NIESR) Discussion Papers 194, National Institute of Economic and Social Research.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oscar Claveria & Enric Monte & Salvador Torra, 2018. "A Data-Driven Approach to Construct Survey-Based Indicators by Means of Evolutionary Algorithms," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 135(1), pages 1-14, January.
    2. Oscar Claveria & Enric Monte & Salvador Torra, 2019. "Evolutionary Computation for Macroeconomic Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 833-849, February.
    3. Nolte, Ingmar & Pohlmeier, Winfried, 2007. "Using forecasts of forecasters to forecast," International Journal of Forecasting, Elsevier, vol. 23(1), pages 15-28.
    4. Breitung, Jörg & Schmeling, Maik, 2013. "Quantifying survey expectations: What’s wrong with the probability approach?," International Journal of Forecasting, Elsevier, vol. 29(1), pages 142-154.
    5. Oscar Claveria & Enric Monte & Salvador Torra, 2018. "Tracking economic growth by evolving expectations via genetic programming: A two-step approach," Working Papers XREAP2018-4, Xarxa de Referència en Economia Aplicada (XREAP), revised Oct 2018.
    6. Richard De Abreu Lourenco & Philip Lowe, 1994. "Demand Shocks, Inflation and the Business Cycle," RBA Research Discussion Papers rdp9411, Reserve Bank of Australia.
    7. Christian Seiler, 2013. "Nonresponse in Business Tendency Surveys: Theoretical Discourse and Empirical Evidence," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 52.
    8. Christian Seiler, 2015. "On the robustness of balance statistics with respect to nonresponse," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2014(2), pages 45-62.
    9. Klaus Abberger & Sascha Becker & Barbara Hofmann & Klaus Wohlrabe, 2007. "Mikrodaten im ifo Institut für Wirtschaftsforschung – Bestand, Verwendung und Zugang," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 1(1), pages 27-42, June.
    10. Sascha O. Becker & Klaus Wohlrabe, 2008. "European Data Watch: Micro Data at the Ifo Institute for Economic Research – The “Ifo Business Survey”, Usage and Access," Schmollers Jahrbuch : Journal of Applied Social Science Studies / Zeitschrift für Wirtschafts- und Sozialwissenschaften, Duncker & Humblot, Berlin, vol. 128(2), pages 307-319.
    11. Ercan Uygur, 1989. "Inflation Expectations of the Turkish Manufacturing Firms," Discussion Papers 8904, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
    12. James Mitchell & Richard J. Smith & Martin R. Weale, 2002. "Quantification of Qualitative Firm-Level Survey Data," Economic Journal, Royal Economic Society, vol. 112(478), pages 117-135, March.
    13. Tomas Philipson & John Cawley, 1999. "An Empirical Examination of Information Barriers to Trade in Insurance," American Economic Review, American Economic Association, vol. 89(4), pages 827-846, September.
    14. Oscar Claveria & Enric Monte & Salvador Torra, 2017. "A new approach for the quantification of qualitative measures of economic expectations," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(6), pages 2685-2706, November.
    15. Lui, Silvia & Mitchell, James & Weale, Martin, 2011. "The utility of expectational data: Firm-level evidence using matched qualitative-quantitative UK surveys," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1128-1146, October.
    16. Nolte, Ingmar & Nolte, Sandra & Pohlmeier, Winfried, 2019. "What determines forecasters’ forecasting errors?," International Journal of Forecasting, Elsevier, vol. 35(1), pages 11-24.
    17. Olivier Biau & Hélène Erkel-Rousse & Nicolas Ferrari, 2006. "Réponses individuelles aux enquêtes de conjoncture et prévision de la production manufacturière," Économie et Statistique, Programme National Persée, vol. 395(1), pages 91-116.
    18. Oscar Claveria & Enric Monte & Salvador Torra, 2017. "Let the data do the talking: Empirical modelling of survey-based expectations by means of genetic programming," IREA Working Papers 201711, University of Barcelona, Research Institute of Applied Economics, revised May 2017.
    19. Lindström, Tomas, 2000. "Qualitative Survey Responses and Production over the Business Cycle," Working Paper Series 116, Sveriges Riksbank (Central Bank of Sweden).
    20. Oscar Claveria & Enric Monte & Salvador Torra, 2019. "Empirical modelling of survey-based expectations for the design of economic indicators in five European regions," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 46(2), pages 205-227, May.

    More about this item

    Keywords

    Russian Industry; Analytical Capacity; business surveys; Russia; IEP;
    All these keywords.

    JEL classification:

    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
    • C83 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Survey Methods; Sampling Methods
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • L25 - Industrial Organization - - Firm Objectives, Organization, and Behavior - - - Firm Performance

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gai:rpaper:53. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Victor Hugues). General contact details of provider: http://edirc.repec.org/data/gaidaru.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.