IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v162y2025icp242-259.html
   My bibliography  Save this article

Electrifying: What factors drive the transition toward electric vehicle adoption in the Netherlands?

Author

Listed:
  • Zhang, Linlin
  • van Lierop, Dea
  • Ettema, Dick

Abstract

This study examines car adoption in the context of household car fleet choices using data from the Dutch National Travel Survey (2018–2020) and nested logit regression models. We analyze the factors associated with the selection of different vehicle types, including internal combustion engine vehicles (ICEVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and battery electric vehicles (BEVs), across one- and two-car fleets. Descriptive analysis indicates that BEVs and PHEVs are more prevalent in two-car households than in one-car households, where they are less likely to be the sole vehicle. Additionally, these vehicles are predominantly leased or company cars rather than privately owned, regardless of household fleet size. Model findings reveal that higher income strongly correlates with BEV and PHEV adoption, particularly for PHEVs in one-car households. Education also plays a significant role: one-car households adopting BEVs or PHEVs typically have higher education levels, with this effect being most pronounced for BEVs. Geographically, BEV adoption in one-car households is largely an urban phenomenon. Over time, the profile of BEV and PHEV adopters in two-car households has shifted. Dependence on higher education and urban concentration has decreased, reflecting a broader adoption pattern. These findings underscore the need for policies that address disparities in the uptake of electric vehicles, especially among user groups that are slower to adopt new technologies.

Suggested Citation

  • Zhang, Linlin & van Lierop, Dea & Ettema, Dick, 2025. "Electrifying: What factors drive the transition toward electric vehicle adoption in the Netherlands?," Transport Policy, Elsevier, vol. 162(C), pages 242-259.
  • Handle: RePEc:eee:trapol:v:162:y:2025:i:c:p:242-259
    DOI: 10.1016/j.tranpol.2024.08.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X24002257
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2024.08.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Naveen Eluru & Chandra Bhat & Ram Pendyala & Karthik Konduri, 2010. "A joint flexible econometric model system of household residential location and vehicle fleet composition/usage choices," Transportation, Springer, vol. 37(4), pages 603-626, July.
    2. Bansal, Prateek & Kockelman, Kara M. & Schievelbein, Will & Schauer-West, Scott, 2018. "Indian vehicle ownership and travel behavior: A case study of Bengaluru, Delhi and Kolkata," Research in Transportation Economics, Elsevier, vol. 71(C), pages 2-8.
    3. Mukherjee, Sanghamitra Chattopadhyay & Ryan, Lisa, 2020. "Factors influencing early battery electric vehicle adoption in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    4. Can Erutku, 2020. "A First Look at Ontario's Electric Vehicle Incentive Program: Who Are Ontario's Green Drivers?," Canadian Public Policy, University of Toronto Press, vol. 46(1), pages 37-44, March.
    5. Zachary P. Cano & Dustin Banham & Siyu Ye & Andreas Hintennach & Jun Lu & Michael Fowler & Zhongwei Chen, 2018. "Batteries and fuel cells for emerging electric vehicle markets," Nature Energy, Nature, vol. 3(4), pages 279-289, April.
    6. Mandys, F., 2021. "Electric vehicles and consumer choices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    7. Liao, Fanchao & Molin, Eric & Timmermans, Harry & van Wee, Bert, 2018. "The impact of business models on electric vehicle adoption: A latent transition analysis approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 531-546.
    8. Plötz, Patrick & Schneider, Uta & Globisch, Joachim & Dütschke, Elisabeth, 2014. "Who will buy electric vehicles? Identifying early adopters in Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 96-109.
    9. Kester, Johannes & Sovacool, Benjamin K. & Noel, Lance & Zarazua de Rubens, Gerardo, 2020. "Rethinking the spatiality of Nordic electric vehicles and their popularity in urban environments: Moving beyond the city?," Journal of Transport Geography, Elsevier, vol. 82(C).
    10. Tal, Gil & Nicholas, Michael A. & Woodjack, Justin & Scrivano, Daniel, 2013. "Who Is Buying Electric Cars in California? Exploring Household and Vehicle Fleet Characteristics of New Plug-In Vehicle Owners," Institute of Transportation Studies, Working Paper Series qt70f4r9wc, Institute of Transportation Studies, UC Davis.
    11. Daniel Newman & Peter Wells & Ceri Donovan & Paul Nieuwenhuis & Huw Davies, 2014. "Urban, sub-urban or rural: where is the best place for electric vehicles?," International Journal of Automotive Technology and Management, Inderscience Enterprises Ltd, vol. 14(3/4), pages 306-323.
    12. Yang, Anni & Liu, Chenhui & Yang, Di & Lu, Chaoru, 2023. "Electric vehicle adoption in a mature market: A case study of Norway," Journal of Transport Geography, Elsevier, vol. 106(C).
    13. David Timmons & Andrew Perumal, 2016. "US vehicle fuel-efficiency choices: demographic, behavioral, and cultural factors," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 59(12), pages 2179-2197, December.
    14. Canepa, Kathryn & Hardman, Scott & Tal, Gil, 2019. "An early look at plug-in electric vehicle adoption in disadvantaged communities in California," Transport Policy, Elsevier, vol. 78(C), pages 19-30.
    15. Almeida Neves, Sónia & Cardoso Marques, António & Alberto Fuinhas, José, 2019. "Technological progress and other factors behind the adoption of electric vehicles: Empirical evidence for EU countries," Research in Transportation Economics, Elsevier, vol. 74(C), pages 28-39.
    16. Koetse, Mark J. & Hoen, Anco, 2014. "Preferences for alternative fuel vehicles of company car drivers," Resource and Energy Economics, Elsevier, vol. 37(C), pages 279-301.
    17. Sabreena Anowar & Naveen Eluru & Luis F. Miranda-Moreno, 2014. "Alternative Modeling Approaches Used for Examining Automobile Ownership: A Comprehensive Review," Transport Reviews, Taylor & Francis Journals, vol. 34(4), pages 441-473, July.
    18. Morton, Craig & Anable, Jillian & Yeboah, Godwin & Cottrill, Caitlin, 2018. "The spatial pattern of demand in the early market for electric vehicles: Evidence from the United Kingdom," Journal of Transport Geography, Elsevier, vol. 72(C), pages 119-130.
    19. White, Lee V. & Sintov, Nicole D., 2017. "You are what you drive: Environmentalist and social innovator symbolism drives electric vehicle adoption intentions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 99(C), pages 94-113.
    20. Jenn, Alan & Lee, Jae Hyun & Hardman, Scott & Tal, Gil, 2020. "An in-depth examination of electric vehicle incentives: Consumer heterogeneity and changing response over time," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 97-109.
    21. Wang, Ning & Tang, Linhao & Pan, Huizhong, 2018. "Analysis of public acceptance of electric vehicles: An empirical study in Shanghai," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 284-291.
    22. Sabreena Anowar & Shamsunnahar Yasmin & Naveen Eluru & Luis Miranda-Moreno, 2014. "Analyzing car ownership in Quebec City: a comparison of traditional and latent class ordered and unordered models," Transportation, Springer, vol. 41(5), pages 1013-1039, September.
    23. Vassileva, Iana & Campillo, Javier, 2017. "Adoption barriers for electric vehicles: Experiences from early adopters in Sweden," Energy, Elsevier, vol. 120(C), pages 632-641.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Anzhong & Dai, Luote & Ali, Sajid & Nazar, Raima & Anser, Muhammad Khalid, 2025. "Zero-emission vision: The role of E-mobility technology budgets in carbon mitigation," Transport Policy, Elsevier, vol. 164(C), pages 265-280.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng, Ruoqing & Tang, Justin Hayse Chiwing G. & Yang, Xiong & Meng, Meng & Zhang, Jie & Zhuge, Chengxiang, 2024. "Investigating the factors influencing the electric vehicle market share: A comparative study of the European Union and United States," Applied Energy, Elsevier, vol. 355(C).
    2. Jia, Wenjian & Jiang, Zhiqiu & Wang, Qian & Xu, Bin & Xiao, Mei, 2023. "Preferences for zero-emission vehicle attributes: Comparing early adopters with mainstream consumers in California," Transport Policy, Elsevier, vol. 135(C), pages 21-32.
    3. David W. Eby & Renée M. St. Louis & Jennifer S. Zakrajsek & Nicole Zanier, 2025. "Adoption and Use of Battery Electric Vehicles Among Older Drivers: A Review and Research Recommendations," Sustainability, MDPI, vol. 17(7), pages 1-13, March.
    4. Jose Esteves & Daniel Alonso-Martínez & Guillermo de Haro, 2021. "Profiling Spanish Prospective Buyers of Electric Vehicles Based on Demographics," Sustainability, MDPI, vol. 13(16), pages 1-22, August.
    5. Caulfield, Brian & Furszyfer, Dylan & Stefaniec, Agnieszka & Foley, Aoife, 2022. "Measuring the equity impacts of government subsidies for electric vehicles," Energy, Elsevier, vol. 248(C).
    6. Jiang, Yuting & Fu, Qian & Thomopoulos, Nikolas & Chen, Jason Li, 2025. "Understanding the influence of past driving experience on electric vehicle purchase intention in China," Transport Policy, Elsevier, vol. 162(C), pages 270-282.
    7. Ahmad, Hafsoah & Rahul, T.M. & Asija, Navdeep K., 2025. "Accelerators and hurdles, and their mediating effects on electric vehicle adoption," Transport Policy, Elsevier, vol. 162(C), pages 20-30.
    8. Mustafa Hamurcu & Tamer Eren, 2023. "Multicriteria decision making and goal programming for determination of electric automobile aimed at sustainable green environment: a case study," Environment Systems and Decisions, Springer, vol. 43(2), pages 211-231, June.
    9. Hardman, Scott & Tal, Gil, 2021. "Discontinuance Among California’s Electric Vehicle Buyers: Why are Some Consumers Abandoning Electric Vehicles?," Institute of Transportation Studies, Working Paper Series qt11n6f4hs, Institute of Transportation Studies, UC Davis.
    10. Yang, Zaoli & Li, Qin & Yan, Yamin & Shang, Wen-Long & Ochieng, Washington, 2022. "Examining influence factors of Chinese electric vehicle market demand based on online reviews under moderating effect of subsidy policy," Applied Energy, Elsevier, vol. 326(C).
    11. Felix Hinnüber & Marek Szarucki & Katarzyna Szopik-Depczyńska, 2019. "The Effects of a First-Time Experience on the Evaluation of Battery Electric Vehicles by Potential Consumers," Sustainability, MDPI, vol. 11(24), pages 1-25, December.
    12. Secinaro, Silvana & Calandra, Davide & Lanzalonga, Federico & Ferraris, Alberto, 2022. "Electric vehicles’ consumer behaviours: Mapping the field and providing a research agenda," Journal of Business Research, Elsevier, vol. 150(C), pages 399-416.
    13. Kim, Sung Hoo & Mokhtarian, Patricia L., 2018. "Taste heterogeneity as an alternative form of endogeneity bias: Investigating the attitude-moderated effects of built environment and socio-demographics on vehicle ownership using latent class modelin," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 130-150.
    14. Pillai, Arya & Curtis, John & Tovar Reanos, Miguel, 2021. "Spatial scenarios of potential electric vehicle adopters in Ireland," Papers WP705, Economic and Social Research Institute (ESRI).
    15. Adu-Gyamfi, Gibbson & Asamoah, Ama Nyarkoh & Obuobi, Bright & Nketiah, Emmanuel & Zhang, Ming, 2024. "Electric mobility in an oil-producing developing nation: Empirical assessment of electric vehicle adoption," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    16. Jia, Wenjian & Chen, T. Donna, 2023. "Investigating heterogeneous preferences for plug-in electric vehicles: Policy implications from different choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    17. Kester, Johannes & Sovacool, Benjamin K. & Noel, Lance & Zarazua de Rubens, Gerardo, 2020. "Rethinking the spatiality of Nordic electric vehicles and their popularity in urban environments: Moving beyond the city?," Journal of Transport Geography, Elsevier, vol. 82(C).
    18. Ball-Burack, Ari & Sun, Ruixiao & Stack, Stephen & Ou, Shiqi (Shawn) & Bose, Ranjan & Yang, Hung-Chia, 2025. "Assessing the behavioral realism of energy system models in light of the consumer adoption literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
    19. Konstantina Anastasiadou & Nikolaos Gavanas, 2022. "State-of-the-Art Review of the Key Factors Affecting Electric Vehicle Adoption by Consumers," Energies, MDPI, vol. 15(24), pages 1-23, December.
    20. Pellegrini, Andrea & Yao, Xusheng & Rose, John M. & Ma, Shoufeng, 2025. "An autoregressive spatial stochastic frontier analysis for quantifying the sales efficiency of the electric vehicle market: An application to 88 pilot cities in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:162:y:2025:i:c:p:242-259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.