IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v86y2016icp94-115.html
   My bibliography  Save this article

An integer programming approach to the bloodmobile routing problem

Author

Listed:
  • Gunpinar, Serkan
  • Centeno, Grisselle

Abstract

Every day, a blood center must determine a set of locations among a group of potential sites to route their vehicles for blood collection so as to avoid shortfalls. In this study, a vehicle routing problem is modeled using an integer programming approach to simultaneously identify number of bloodmobiles to operate and minimize the distance travelled. Additionally, the model is extended to incorporate uncertainty in blood potentials and variable durations in bloodmobile visits. Optimal routings are determined using CPLEX solver and branch-and-price algorithm. Results show that proposed algorithm solve the problem to optimality up to 30 locations within 3600s.

Suggested Citation

  • Gunpinar, Serkan & Centeno, Grisselle, 2016. "An integer programming approach to the bloodmobile routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 86(C), pages 94-115.
  • Handle: RePEc:eee:transe:v:86:y:2016:i:c:p:94-115
    DOI: 10.1016/j.tre.2015.12.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554515002306
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2015.12.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    2. Kopach, Renata & Balcioglu, Baris & Carter, Michael, 2008. "Tutorial on constructing a red blood cell inventory management system with two demand rates," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1051-1059, March.
    3. William P. Pierskalla & Chris D. Roach, 1972. "Optimal Issuing Policies for Perishable Inventory," Management Science, INFORMS, vol. 18(11), pages 603-614, July.
    4. Raj Jagannathan & Tarun Sen, 1991. "Storing Crossmatched Blood: A Perishable Inventory Model with Prior Allocation," Management Science, INFORMS, vol. 37(3), pages 251-266, March.
    5. Sun, Li & Zhao, Lindu & Hou, Jing, 2015. "Optimization of postal express line network under mixed driving pattern of trucks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 147-169.
    6. Steven Nahmias, 1982. "Perishable Inventory Theory: A Review," Operations Research, INFORMS, vol. 30(4), pages 680-708, August.
    7. Niakan, Farzad & Rahimi, Mohammad, 2015. "A multi-objective healthcare inventory routing problem; a fuzzy possibilistic approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 80(C), pages 74-94.
    8. Brian Custer & Eric S. Johnson & Sean D. Sullivan & Tom K. Hazlet & Scott D. Ramsey & Edward L. Murphy & Michael P. Busch, 2005. "Community Blood Supply Model: Development of a New Model to Assess the Safety, Sufficiency, and Cost of the Blood Supply," Medical Decision Making, , vol. 25(5), pages 571-582, September.
    9. Haijema, René & van Dijk, Nico & van der Wal, Jan & Smit Sibinga, Cees, 2009. "Blood platelet production with breaks: optimization by SDP and simulation," International Journal of Production Economics, Elsevier, vol. 121(2), pages 464-473, October.
    10. K Katsaliaki & S C Brailsford, 2007. "Using simulation to improve the blood supply chain," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(2), pages 219-227, February.
    11. Anna Nagurney & Amir Masoumi & Min Yu, 2012. "Supply chain network operations management of a blood banking system with cost and risk minimization," Computational Management Science, Springer, vol. 9(2), pages 205-231, May.
    12. Gregory P. Prastacos, 1984. "Blood Inventory Management: An Overview of Theory and Practice," Management Science, INFORMS, vol. 30(7), pages 777-800, July.
    13. Sapountzis, Costas, 1984. "Allocating blood to hospitals from a central blood bank," European Journal of Operational Research, Elsevier, vol. 16(2), pages 157-162, May.
    14. Katsaliaki, Korina, 2008. "Cost-effective practices in the blood service sector," Health Policy, Elsevier, vol. 86(2-3), pages 276-287, May.
    15. Edgar Alfonso & Xiaolan Xie & Vincent Augusto & Olivier Garraud, 2012. "Modeling and simulation of blood collection systems," Health Care Management Science, Springer, vol. 15(1), pages 63-78, March.
    16. Hemmelmayr, Vera & Doerner, Karl F. & Hartl, Richard F. & Savelsbergh, Martin W.P., 2010. "Vendor managed inventory for environments with stochastic product usage," European Journal of Operational Research, Elsevier, vol. 202(3), pages 686-695, May.
    17. Derya A. Jacobs & Murat N. Silan & Barry A. Clemson, 1996. "An Analysis of Alternative Locations and Service Areas of American Red Cross Blood Facilities," Interfaces, INFORMS, vol. 26(3), pages 40-50, June.
    18. Deming Zhou & Lawrence C. Leung & William P. Pierskalla, 2011. "Inventory Management of Platelets in Hospitals: Optimal Inventory Policy for Perishable Products with Regular and Optional Expedited Replenishments," Manufacturing & Service Operations Management, INFORMS, vol. 13(4), pages 420-438, October.
    19. Şahinyazan, Feyza Güliz & Kara, Bahar Y. & Taner, Mehmet Rüştü, 2015. "Selective vehicle routing for a mobile blood donation system," European Journal of Operational Research, Elsevier, vol. 245(1), pages 22-34.
    20. Kenneth E. Kendall & Sang M. Lee, 1980. "Formulating Blood Rotation Policies with Multiple Objectives," Management Science, INFORMS, vol. 26(11), pages 1145-1157, November.
    21. Beliën, Jeroen & Forcé, Hein, 2012. "Supply chain management of blood products: A literature review," European Journal of Operational Research, Elsevier, vol. 217(1), pages 1-16.
    22. Dursun Delen & Madhav Erraguntla & Richard Mayer & Chang-Nien Wu, 2011. "Better management of blood supply-chain with GIS-based analytics," Annals of Operations Research, Springer, vol. 185(1), pages 181-193, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Donya Rahmani, 2019. "Designing a robust and dynamic network for the emergency blood supply chain with the risk of disruptions," Annals of Operations Research, Springer, vol. 283(1), pages 613-641, December.
    2. Mari Ito & Ryuta Takashima, 2023. "Evaluating Inventory Management Policies of Platelets at Regional-Block Blood Centers in Japan," SN Operations Research Forum, Springer, vol. 4(3), pages 1-22, September.
    3. Esmizadeh, Yalda & Bashiri, Mahdi & Jahani, Hamed & Almada-Lobo, Bernardo, 2021. "Cold chain management in hierarchical operational hub networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    4. Lowalekar, Harshal & Ravi, R. Raghavendra, 2017. "Revolutionizing blood bank inventory management using the TOC thinking process: An Indian case study," International Journal of Production Economics, Elsevier, vol. 186(C), pages 89-122.
    5. Elmira Farrokhizadeh & Seyed Amin Seyfi-Shishavan & Sule Itir Satoglu, 2022. "Blood supply planning during natural disasters under uncertainty: a novel bi-objective model and an application for red crescent," Annals of Operations Research, Springer, vol. 319(1), pages 73-113, December.
    6. Paredes-Belmar, Germán & Marianov, Vladimir & Bronfman, Andrés & Obreque, Carlos & Lüer-Villagra, Armin, 2016. "A milk collection problem with blending," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 26-43.
    7. Xiang Li & Haoyue Fan & Jiaming Liu & Qifeng Xun, 2022. "Staff scheduling in blood collection problems," Annals of Operations Research, Springer, vol. 316(1), pages 365-400, September.
    8. Eda Yücel & F. Sibel Salman & Burçin Bozkaya & Cemre Gökalp, 2020. "A data-driven optimization framework for routing mobile medical facilities," Annals of Operations Research, Springer, vol. 291(1), pages 1077-1102, August.
    9. M. Rezaei Kallaj & M. Hasannia Kolaee & S. M. J. Mirzapour Al-e-hashem, 2023. "Integrating bloodmobiles and drones in a post-disaster blood collection problem considering blood groups," Annals of Operations Research, Springer, vol. 321(1), pages 783-811, February.
    10. Alexander Jungwirth & Guy Desaulniers & Markus Frey & Rainer Kolisch, 2022. "Exact Branch-Price-and-Cut for a Hospital Therapist Scheduling Problem with Flexible Service Locations and Time-Dependent Location Capacity," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1157-1175, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beliën, Jeroen & Forcé, Hein, 2012. "Supply chain management of blood products: A literature review," European Journal of Operational Research, Elsevier, vol. 217(1), pages 1-16.
    2. Ramezanian, Reza & Behboodi, Zahra, 2017. "Blood supply chain network design under uncertainties in supply and demand considering social aspects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 104(C), pages 69-82.
    3. Puranam, Kartikeya & Novak, David C. & Lucas, Marilyn T. & Fung, Mark, 2017. "Managing blood inventory with multiple independent sources of supply," European Journal of Operational Research, Elsevier, vol. 259(2), pages 500-511.
    4. Liu, Wenqian & Ke, Ginger Y. & Chen, Jian & Zhang, Lianmin, 2020. "Scheduling the distribution of blood products: A vendor-managed inventory routing approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    5. Dehghani, Maryam & Abbasi, Babak & Oliveira, Fabricio, 2021. "Proactive transshipment in the blood supply chain: A stochastic programming approach," Omega, Elsevier, vol. 98(C).
    6. Dillon, Mary & Oliveira, Fabricio & Abbasi, Babak, 2017. "A two-stage stochastic programming model for inventory management in the blood supply chain," International Journal of Production Economics, Elsevier, vol. 187(C), pages 27-41.
    7. Hamdan, Bayan & Diabat, Ali, 2020. "Robust design of blood supply chains under risk of disruptions using Lagrangian relaxation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    8. Turgay Ayer & Can Zhang & Chenxi Zeng & Chelsea C. White III & V. Roshan Joseph, 2019. "Analysis and Improvement of Blood Collection Operations," Service Science, INFORMS, vol. 21(1), pages 29-46, January.
    9. Duan, Qinglin & Liao, T. Warren, 2014. "Optimization of blood supply chain with shortened shelf lives and ABO compatibility," International Journal of Production Economics, Elsevier, vol. 153(C), pages 113-129.
    10. Bruno, Giuseppe & Diglio, Antonio & Piccolo, Carmela & Cannavacciuolo, Lorella, 2019. "Territorial reorganization of regional blood management systems: Evidences from an Italian case study," Omega, Elsevier, vol. 89(C), pages 54-70.
    11. Tirkolaee, Erfan Babaee & Golpîra, Hêriş & Javanmardan, Ahvan & Maihami, Reza, 2023. "A socio-economic optimization model for blood supply chain network design during the COVID-19 pandemic: An interactive possibilistic programming approach for a real case study," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    12. Anna Nagurney & Pritha Dutta, 2019. "Supply chain network competition among blood service organizations: a Generalized Nash Equilibrium framework," Annals of Operations Research, Springer, vol. 275(2), pages 551-586, April.
    13. Lowalekar, Harshal & Ravi, R. Raghavendra, 2017. "Revolutionizing blood bank inventory management using the TOC thinking process: An Indian case study," International Journal of Production Economics, Elsevier, vol. 186(C), pages 89-122.
    14. Ensafian, Hamidreza & Yaghoubi, Saeed, 2017. "Robust optimization model for integrated procurement, production and distribution in platelet supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 32-55.
    15. Hosseini-Motlagh, Seyyed-Mahdi & Samani, Mohammad Reza Ghatreh & Cheraghi, Sara, 2020. "Robust and stable flexible blood supply chain network design under motivational initiatives," Socio-Economic Planning Sciences, Elsevier, vol. 70(C).
    16. Osorio, Andres F. & Brailsford, Sally C. & Smith, Honora K., 2018. "Whole blood or apheresis donations? A multi-objective stochastic optimization approach," European Journal of Operational Research, Elsevier, vol. 266(1), pages 193-204.
    17. Pahl, Julia & Voß, Stefan, 2014. "Integrating deterioration and lifetime constraints in production and supply chain planning: A survey," European Journal of Operational Research, Elsevier, vol. 238(3), pages 654-674.
    18. Wang, Ke-Ming & Ma, Zu-Jun, 2015. "Age-based policy for blood transshipment during blood shortage," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 80(C), pages 166-183.
    19. Civelek, Ismail & Karaesmen, Itir & Scheller-Wolf, Alan, 2015. "Blood platelet inventory management with protection levels," European Journal of Operational Research, Elsevier, vol. 243(3), pages 826-838.
    20. Donya Rahmani, 2019. "Designing a robust and dynamic network for the emergency blood supply chain with the risk of disruptions," Annals of Operations Research, Springer, vol. 283(1), pages 613-641, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:86:y:2016:i:c:p:94-115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.