IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v48y2012i5p1056-1063.html
   My bibliography  Save this article

Environmental benefits of air–rail intermodality: The example of Madrid Barajas

Author

Listed:
  • Zanin, Massimiliano
  • Herranz, Ricardo
  • Ladousse, Sophie

Abstract

The environmental impact of transport is a growing issue in transport infrastructure planning. The construction of a high-speed rail station at the Madrid Barajas Airport in Spain is an example of the integration of different transportation modes, with expected environmental benefits. We construct a model to assess modal choice and environmental benefits. The results show that with high-speed rail the number of people choosing air travel and the private car is reduced leading to important environmental benefits: a reduction of close to 5kg of CO2 per passenger, or 10% of all emissions on the corridor. Our results also show that increasing the cost of using the private car is picked up by air transport rather than high-speed rail, leading to an increase in total emissions.

Suggested Citation

  • Zanin, Massimiliano & Herranz, Ricardo & Ladousse, Sophie, 2012. "Environmental benefits of air–rail intermodality: The example of Madrid Barajas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(5), pages 1056-1063.
  • Handle: RePEc:eee:transe:v:48:y:2012:i:5:p:1056-1063
    DOI: 10.1016/j.tre.2012.03.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554512000282
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2012.03.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Philipp Goedeking, 2010. "Networks in Aviation," Springer Books, Springer, number 978-3-642-13764-8, September.
    2. Latora, Vito & Marchiori, Massimo, 2002. "Is the Boston subway a small-world network?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 109-113.
    3. Juan Carlos Martín & Gustavo Nombela, 2008. "Impacto de los nuevos trenes AVE sobre la movilidad," Revista de Economia Aplicada, Universidad de Zaragoza, Departamento de Estructura Economica y Economia Publica, vol. 16(2), pages 5-23, Autumn.
    4. Malighetti, Paolo & Paleari, Stefano & Redondi, Renato, 2008. "Connectivity of the European airport network: “Self-help hubbing†and business implications," Journal of Air Transport Management, Elsevier, vol. 14(2), pages 53-65.
    5. Lacasa, Lucas & Cea, Miguel & Zanin, Massimiliano, 2009. "Jamming transition in air transportation networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(18), pages 3948-3954.
    6. Philipp Goedeking, 2010. "Multi-Hub Networks: Masterpieces or Nightmares of Complexity?," Springer Books, in: Networks in Aviation, chapter 0, pages 113-117, Springer.
    7. Dennis, Nigel, 1994. "Scheduling strategies for airline hub operations," Journal of Air Transport Management, Elsevier, vol. 1(3), pages 131-144.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Fangqing & Hess, Stephane & Dekker, Thijs, 2018. "Accounting for the impact of variety-seeking: Theory and application to HSR-air intermodality in China," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 99-111.
    2. Román, Concepción & Martín, Juan Carlos, 2014. "Integration of HSR and air transport: Understanding passengers’ preferences," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 129-141.
    3. Ison, Stephen & Merkert, Rico & Mulley, Corinne, 2014. "Policy approaches to public transport at airports—Some diverging evidence from the UK and Australia," Transport Policy, Elsevier, vol. 35(C), pages 265-274.
    4. Jingjing Hao & Ling Zhang & Xiaofeng Ji & Xiaolong Wu & Lan Liu, 2020. "Investigating the Accessibility between Civil Airports and Tourist Locations in Tourist Cities in Yunnan Province, China," Sustainability, MDPI, vol. 12(10), pages 1-22, May.
    5. Avogadro, Nicolò & Cattaneo, Mattia & Paleari, Stefano & Redondi, Renato, 2021. "Replacing short-medium haul intra-European flights with high-speed rail: Impact on CO2 emissions and regional accessibility," Transport Policy, Elsevier, vol. 114(C), pages 25-39.
    6. Ting Liu & Gabriel Lodewijks, 2021. "A New Design of Sydney’s Frontport Check-in System," Sustainability, MDPI, vol. 13(7), pages 1-20, March.
    7. Avogadro, Nicolò & Pels, Eric & Redondi, Renato, 2023. "Policy impacts on the propensity to travel by HSR in the Amsterdam – London market," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).
    8. Yuan, Yalong & Yang, Min & Feng, Tao & Rasouli, Soora & Li, Dawei & Ruan, Xinpei, 2021. "Heterogeneity in passenger satisfaction with air-rail integration services: Results of a finite mixture partial least squares model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 133-158.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Logothetis, Michail & Miyoshi, Chikage, 2018. "Network performance and competitive impact of the single hub – A case study on Turkish Airlines and Emirates," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 215-223.
    2. Redondi, Renato & Birolini, Sebastian & Morlotti, Chiara & Paleari, Stefano, 2021. "Connectivity measures and passengers’ behavior: Comparing conventional connectivity models to predict itinerary market shares," Journal of Air Transport Management, Elsevier, vol. 90(C).
    3. Rodríguez-Déniz, Héctor & Suau-Sanchez, Pere & Voltes-Dorta, Augusto, 2013. "Classifying airports according to their hub dimensions: an application to the US domestic network," Journal of Transport Geography, Elsevier, vol. 33(C), pages 188-195.
    4. Suau-Sanchez, Pere & Voltes-Dorta, Augusto & Rodríguez-Déniz, Héctor, 2015. "Regulatory airport classification in the US: The role of international markets," Transport Policy, Elsevier, vol. 37(C), pages 157-166.
    5. Bombelli, Alessandro & Santos, Bruno F. & Tavasszy, Lóránt, 2020. "Analysis of the air cargo transport network using a complex network theory perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    6. O’Connell, John F. & Bueno, Oriol Escofet, 2018. "A study into the hub performance Emirates, Etihad Airways and Qatar Airways and their competitive position against the major European hubbing airlines," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 257-268.
    7. Bongiorno, C. & Gurtner, G. & Lillo, F. & Mantegna, R.N. & Miccichè, S., 2017. "Statistical characterization of deviations from planned flight trajectories in air traffic management," Journal of Air Transport Management, Elsevier, vol. 58(C), pages 152-163.
    8. Seredyński, Adam & Rothlauf, Franz & Grosche, Tobias, 2014. "An airline connection builder using maximum connection lag with greedy parameter selection," Journal of Air Transport Management, Elsevier, vol. 36(C), pages 120-128.
    9. Akça, Zeliha, 2018. "Comparative analysis with a new hub connectivity measure considering revenue and passenger demand," Journal of Air Transport Management, Elsevier, vol. 67(C), pages 34-45.
    10. Zhang, Mengyao & Huang, Tao & Guo, Zhaoxia & He, Zhenggang, 2022. "Complex-network-based traffic network analysis and dynamics: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    11. Zhang, Shengrun & Zheng, Hailong & Chen, Yuting & Witlox, Frank, 2020. "Factors influencing the hub connectivity of Beijing Capital Airport in its international markets," Journal of Air Transport Management, Elsevier, vol. 88(C).
    12. Lordan, Oriol & Sallan, Jose M. & Simo, Pep, 2014. "Study of the topology and robustness of airline route networks from the complex network approach: a survey and research agenda," Journal of Transport Geography, Elsevier, vol. 37(C), pages 112-120.
    13. Lieshout, Rogier & Matsumoto, Hidenobu, 2012. "New international services and the competitiveness of Tokyo International Airport," Journal of Transport Geography, Elsevier, vol. 22(C), pages 53-64.
    14. Boonekamp, Thijs & Burghouwt, Guillaume, 2017. "Measuring connectivity in the air freight industry," Journal of Air Transport Management, Elsevier, vol. 61(C), pages 81-94.
    15. Soh, Harold & Lim, Sonja & Zhang, Tianyou & Fu, Xiuju & Lee, Gary Kee Khoon & Hung, Terence Gih Guang & Di, Pan & Prakasam, Silvester & Wong, Limsoon, 2010. "Weighted complex network analysis of travel routes on the Singapore public transportation system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5852-5863.
    16. Warnock-Smith, David & Christidis, Panayotis & Dziedzic, Marcin, 2023. "Measuring disparities in air transport access across Europe: An inequality, vulnerability and dependence approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 167(C).
    17. Xueguo Xu & Chen Xu & Wenxin Zhang, 2022. "Research on the Destruction Resistance of Giant Urban Rail Transit Network from the Perspective of Vulnerability," Sustainability, MDPI, vol. 14(12), pages 1-26, June.
    18. Zhou, Yaoming & Wang, Junwei, 2018. "Efficiency of complex networks under failures and attacks: A percolation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 658-664.
    19. Lordan, Oriol & Sallan, Jose M., 2019. "Core and critical cities of global region airport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 724-733.
    20. Lia Papadopoulos & Pablo Blinder & Henrik Ronellenfitsch & Florian Klimm & Eleni Katifori & David Kleinfeld & Danielle S Bassett, 2018. "Comparing two classes of biological distribution systems using network analysis," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-31, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:48:y:2012:i:5:p:1056-1063. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.