IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v385y2007i1p385-396.html
   My bibliography  Save this article

Information theoretic description of networks

Author

Listed:
  • Wilhelm, Thomas
  • Hollunder, Jens

Abstract

We present a new information theoretic approach for network characterizations. It is developed to describe the general type of networks with n nodes and L directed and weighted links, i.e., it also works for the simpler undirected and unweighted networks. The new information theoretic measures for network characterizations are based on a transmitter–receiver analogy of effluxes and influxes. Based on these measures, we classify networks as either complex or non-complex and as either democracy or dictatorship networks. Directed networks, in particular, are furthermore classified as either information spreading and information collecting networks.

Suggested Citation

  • Wilhelm, Thomas & Hollunder, Jens, 2007. "Information theoretic description of networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(1), pages 385-396.
  • Handle: RePEc:eee:phsmap:v:385:y:2007:i:1:p:385-396
    DOI: 10.1016/j.physa.2007.06.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437107007170
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2007.06.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gergely Palla & Albert-László Barabási & Tamás Vicsek, 2007. "Quantifying social group evolution," Nature, Nature, vol. 446(7136), pages 664-667, April.
    2. Latora, Vito & Marchiori, Massimo, 2002. "Is the Boston subway a small-world network?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 109-113.
    3. H. Jeong & S. P. Mason & A.-L. Barabási & Z. N. Oltvai, 2001. "Lethality and centrality in protein networks," Nature, Nature, vol. 411(6833), pages 41-42, May.
    4. Ann E. Krause & Kenneth A. Frank & Doran M. Mason & Robert E. Ulanowicz & William W. Taylor, 2003. "Compartments revealed in food-web structure," Nature, Nature, vol. 426(6964), pages 282-285, November.
    5. Wilhelm, Thomas & Hänggi, Peter, 2003. "Power-law distributions resulting from finite resources," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 329(3), pages 499-508.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. E. M. S. Ribeiro & G. A. Prataviera, 2014. "Information theoretic approach for accounting classification," Papers 1401.2954, arXiv.org, revised Sep 2014.
    2. Ribeiro, E.M.S. & Prataviera, G.A., 2014. "Information theoretic approach for accounting classification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 651-660.
    3. Kim, Jongkwang & Wilhelm, Thomas, 2008. "What is a complex graph?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(11), pages 2637-2652.
    4. Aki-Hiro Sato, 2012. "Econoinformatics meets Data-Centric Social Sciences," Papers 1210.4643, arXiv.org, revised Apr 2013.
    5. Dehmer, Matthias & Emmert-Streib, Frank & Shi, Yongtang, 2015. "Graph distance measures based on topological indices revisited," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 623-633.
    6. Modjtaba Ghorbani & Matthias Dehmer & Frank Emmert-Streib, 2020. "Properties of Entropy-Based Topological Measures of Fullerenes," Mathematics, MDPI, vol. 8(5), pages 1-23, May.
    7. Saha, Papri & Sarkar, Debasish, 2022. "Allometric scaling of von Neumann entropy in animal connectomes and its evolutionary aspect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    8. Frank Aangel Hernández-Mira & José Luis Rosas-Acevedo & Maximino Reyes-Umaña & Juan Violante-González & José María Sigarreta-Almira & Nodari Vakhania, 2021. "Multimetric Index to Evaluate Water Quality in Lagoons: A Biological and Geomorphological Approach," Sustainability, MDPI, vol. 13(9), pages 1-18, April.
    9. Jones, Dominic & Jensen, Henrik Jeldtoft & Sibani, Paolo, 2010. "Mutual information in the Tangled Nature model," Ecological Modelling, Elsevier, vol. 221(3), pages 400-404.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Federico Botta & Charo I del Genio, 2017. "Analysis of the communities of an urban mobile phone network," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-14, March.
    2. Jordán, Ferenc, 2022. "The network perspective: Vertical connections linking organizational levels," Ecological Modelling, Elsevier, vol. 473(C).
    3. Cajueiro, Daniel O., 2010. "Optimal navigation for characterizing the role of the nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1945-1954.
    4. Piaopiao Chen & Agnès H. Michel & Jianzhi Zhang, 2022. "Transposon insertional mutagenesis of diverse yeast strains suggests coordinated gene essentiality polymorphisms," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Soh, Harold & Lim, Sonja & Zhang, Tianyou & Fu, Xiuju & Lee, Gary Kee Khoon & Hung, Terence Gih Guang & Di, Pan & Prakasam, Silvester & Wong, Limsoon, 2010. "Weighted complex network analysis of travel routes on the Singapore public transportation system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5852-5863.
    6. Yubo Peng & Bofeng Zhang & Furong Chang, 2021. "Overlapping Community Detection of Bipartite Networks Based on a Novel Community Density," Future Internet, MDPI, vol. 13(4), pages 1-21, March.
    7. Chakraborty, Abhijit & Krichene, Hazem & Inoue, Hiroyasu & Fujiwara, Yoshi, 2019. "Characterization of the community structure in a large-scale production network in Japan," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 210-221.
    8. Xueguo Xu & Chen Xu & Wenxin Zhang, 2022. "Research on the Destruction Resistance of Giant Urban Rail Transit Network from the Perspective of Vulnerability," Sustainability, MDPI, vol. 14(12), pages 1-26, June.
    9. Zhou, Yaoming & Wang, Junwei, 2018. "Efficiency of complex networks under failures and attacks: A percolation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 658-664.
    10. Ying Song & Zhiwen Zheng & Yunmei Shi & Bo Wang, 2023. "GLOD: The Local Greedy Expansion Method for Overlapping Community Detection in Dynamic Provenance Networks," Mathematics, MDPI, vol. 11(15), pages 1-16, July.
    11. Lordan, Oriol & Sallan, Jose M., 2019. "Core and critical cities of global region airport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 724-733.
    12. Lia Papadopoulos & Pablo Blinder & Henrik Ronellenfitsch & Florian Klimm & Eleni Katifori & David Kleinfeld & Danielle S Bassett, 2018. "Comparing two classes of biological distribution systems using network analysis," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-31, September.
    13. Lu Huang & Xiang Chen & Yi Zhang & Changtian Wang & Xiaoli Cao & Jiarun Liu, 2022. "Identification of topic evolution: network analytics with piecewise linear representation and word embedding," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5353-5383, September.
    14. Marc Barthélémy & Michele Campagna & Alessandro Chessa & Andrea De Montis & Alessandro Vespignani, 2005. "Emergent topological and dynamical properties of a real inter-municipal commuting network - perspectives for policy-making and planning," ERSA conference papers ersa05p607, European Regional Science Association.
    15. Aslan, Serpil & Kaya, Buket & Kaya, Mehmet, 2019. "Predicting potential links by using strengthened projections in evolving bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 998-1011.
    16. Stefano Guarino & Enrico Mastrostefano & Massimo Bernaschi & Alessandro Celestini & Marco Cianfriglia & Davide Torre & Lena Rebecca Zastrow, 2021. "Inferring Urban Social Networks from Publicly Available Data," Future Internet, MDPI, vol. 13(5), pages 1-45, April.
    17. Patuelli, Roberto & Reggiani, Aura & Nijkamp, Peter & Bade, Franz-Josef, 2010. "The evolution of the commuting network in Germany: Spatial and connectivity patterns," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 2(3), pages 5-37.
    18. Saha, Dipa & Mitra, Sayantan & Bhowmik, Bishnu & Sensharma, Ankur, 2021. "Isotropic random geometric networks in two dimensions with a penetrable cavity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    19. Fiedor, Paweł, 2014. "Sector strength and efficiency on developed and emerging financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 180-188.
    20. Mahyar, Hamidreza & Hasheminezhad, Rouzbeh & Ghalebi K., Elahe & Nazemian, Ali & Grosu, Radu & Movaghar, Ali & Rabiee, Hamid R., 2018. "Compressive sensing of high betweenness centrality nodes in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 166-184.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:385:y:2007:i:1:p:385-396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.