IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v198y2025ics1366554525001474.html
   My bibliography  Save this article

Optimizing on-demand ride-hailing services in two-sided coupled markets with impatient riders

Author

Listed:
  • Wang, Hui
  • Li, Yuanyuan
  • Liu, Yang
  • Hu, Xiaowei
  • Wang, Jian

Abstract

This paper examines the optimal design of dynamic pricing strategies for a coupled ride-hailing market with the coexistence of ridesharing and non-ridesharing services. Riders may switch between ridesharing and non-ridesharing alternatives to maximize individual utility, which results in demand diversion. Due to the imbalance between demand and supply, riders may become impatient towards long waiting times, leading to reneging in the coupled ride-hailing systems. We first establish dynamic meeting models for ridesharing and non-ridesharing separately to characterize temporal matching patterns. Meantime, the demand diversion generated by rider switching and reneging rate resulting from rider impatience towards waiting times are integrated into the dynamic meeting models. We derive the conditions on trip fares and commission rates to ensure the existence of the coupled ride-hailing market. We then analyze the effects of the dynamic pricing strategy on the market characteristics, including waiting times and market demand. Moreover, we formulate a Markov Decision Process (MDP) model to optimize dynamic pricing strategies and the corresponding aggregated matching between demand and supply. Finally, we develop the Proximal Policy Optimization (PPO) algorithm to solve the proposed MDP model and an iteration method that uses a Lookahead algorithm to estimate the market state. Our numerical experiments reveal that higher trip fares and commission rates should be adopted under the optimal dynamic pricing strategy compared to the fixed pricing strategy. We also demonstrate the effectiveness of dynamic pricing strategy in improving system performance and matching rate. If riders are more patient with waiting times, the platform operator can improve the trip fares for ridesharing riders to better manage demand, which helps to enhance the matching rate. Meantime, both the reneging rate and the level of demand diversion can be decreased.

Suggested Citation

  • Wang, Hui & Li, Yuanyuan & Liu, Yang & Hu, Xiaowei & Wang, Jian, 2025. "Optimizing on-demand ride-hailing services in two-sided coupled markets with impatient riders," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 198(C).
  • Handle: RePEc:eee:transe:v:198:y:2025:i:c:s1366554525001474
    DOI: 10.1016/j.tre.2025.104106
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554525001474
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2025.104106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yuanyuan & Liu, Yang & Xie, Jun, 2020. "A path-based equilibrium model for ridesharing matching," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 373-405.
    2. Ke, Jintao & Chen, Xiqun (Michael) & Yang, Hai & Li, Sen, 2022. "Coordinating supply and demand in ride-sourcing markets with pre-assigned pooling service and traffic congestion externality," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    3. Hongyao Ma & Fei Fang & David C. Parkes, 2022. "Spatio-Temporal Pricing for Ridesharing Platforms," Operations Research, INFORMS, vol. 70(2), pages 1025-1041, March.
    4. Yang, Hai & Yang, Teng, 2011. "Equilibrium properties of taxi markets with search frictions," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 696-713, May.
    5. Economou, Antonis & Logothetis, Dimitrios & Manou, Athanasia, 2022. "The value of reneging for strategic customers in queueing systems with server vacations/failures," European Journal of Operational Research, Elsevier, vol. 299(3), pages 960-976.
    6. Yang, Hai & Qin, Xiaoran & Ke, Jintao & Ye, Jieping, 2020. "Optimizing matching time interval and matching radius in on-demand ride-sourcing markets," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 84-105.
    7. Yash Babar & Gordon Burtch, 2020. "Examining the Heterogeneous Impact of Ride-Hailing Services on Public Transit Use," Information Systems Research, INFORMS, vol. 31(3), pages 820-834, September.
    8. Maxime C. Cohen & Michael D. Fiszer & Baek Jung Kim, 2022. "Frustration-Based Promotions: Field Experiments in Ride-Sharing," Management Science, INFORMS, vol. 68(4), pages 2432-2464, April.
    9. Zhan, Xingbin & Szeto, W.Y. & Shui, C.S. & Chen, Xiqun (Michael), 2021. "A modified artificial bee colony algorithm for the dynamic ride-hailing sharing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    10. Shi, Junxin & Li, Xiangyong & Aneja, Y.P. & Li, Xiaonan, 2023. "Ride-matching for the ride-hailing platform with heterogeneous drivers," Transport Policy, Elsevier, vol. 136(C), pages 169-192.
    11. Sun, Luoyi & Teunter, Ruud H. & Babai, M. Zied & Hua, Guowei, 2019. "Optimal pricing for ride-sourcing platforms," European Journal of Operational Research, Elsevier, vol. 278(3), pages 783-795.
    12. Zhong, Yuanguang & Yang, Tong & Cao, Bin & Cheng, T.C.E., 2022. "On-demand ride-hailing platforms in competition with the taxi industry: Pricing strategies and government supervision," International Journal of Production Economics, Elsevier, vol. 243(C).
    13. Guiyun Feng & Guangwen Kong & Zizhuo Wang, 2021. "We Are on the Way: Analysis of On-Demand Ride-Hailing Systems," Manufacturing & Service Operations Management, INFORMS, vol. 23(5), pages 1237-1256, September.
    14. Panda, Saunak Kumar & Xiang, Yisha & Liu, Ruiqi, 2024. "Dynamic resource matching in manufacturing using deep reinforcement learning," European Journal of Operational Research, Elsevier, vol. 318(2), pages 408-423.
    15. Guo, Xiaotong & Caros, Nicholas S. & Zhao, Jinhua, 2021. "Robust matching-integrated vehicle rebalancing in ride-hailing system with uncertain demand," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 161-189.
    16. Jiaru Bai & Kut C. So & Christopher S. Tang & Xiqun (Michael) Chen & Hai Wang, 2019. "Coordinating Supply and Demand on an On-Demand Service Platform with Impatient Customers," Manufacturing & Service Operations Management, INFORMS, vol. 21(3), pages 556-570, July.
    17. Wang, Jing-Peng & Ban, Xuegang (Jeff) & Huang, Hai-Jun, 2019. "Dynamic ridesharing with variable-ratio charging-compensation scheme for morning commute," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 390-415.
    18. Li, Yuanyuan & Liu, Yang, 2021. "Optimizing flexible one-to-two matching in ride-hailing systems with boundedly rational users," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    19. Furuhata, Masabumi & Dessouky, Maged & Ordóñez, Fernando & Brunet, Marc-Etienne & Wang, Xiaoqing & Koenig, Sven, 2013. "Ridesharing: The state-of-the-art and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 28-46.
    20. Chen, Xiqun (Michael) & Zheng, Hongyu & Ke, Jintao & Yang, Hai, 2020. "Dynamic optimization strategies for on-demand ride services platform: Surge pricing, commission rate, and incentives," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 23-45.
    21. Vignon, Daniel & Yin, Yafeng & Ke, Jintao, 2023. "Regulating the ride-hailing market in the age of uberization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    22. Zhu, Zheng & Qin, Xiaoran & Ke, Jintao & Zheng, Zhengfei & Yang, Hai, 2020. "Analysis of multi-modal commute behavior with feeding and competing ridesplitting services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 713-727.
    23. Lei Wang & Wenxiang Li & Jinxian Weng & Dong Zhang & Wanjing Ma, 2023. "Do low-carbon rewards incentivize people to ridesplitting? Evidence from structural analysis," Transportation, Springer, vol. 50(5), pages 2077-2109, October.
    24. Nourinejad, Mehdi & Ramezani, Mohsen, 2020. "Ride-Sourcing modeling and pricing in non-equilibrium two-sided markets," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 340-357.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji, Yuxiong & Zhou, Minhang & Zheng, Yujing & Shen, Yu & Du, Yuchuan, 2024. "Urban passenger-and-package sharing transportation by e-hailing taxis: A simulation-based pricing analysis in shanghai," Transport Policy, Elsevier, vol. 156(C), pages 138-151.
    2. Zhao, Meng & Li, Bin & Ren, Jiali & Hao, Zhihua, 2023. "Competition equilibrium of ride-sourcing platforms and optimal government subsidies considering customers’ green preference under peak carbon dioxide emissions," International Journal of Production Economics, Elsevier, vol. 255(C).
    3. Mo, Dong & Wang, Hai & Cai, Zeen & Szeto, W.Y. & Chen, Xiqun (Michael), 2024. "Modeling and regulating a ride-sourcing market integrated with vehicle rental services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
    4. Li, Yuanyuan & Liu, Yang, 2021. "Optimizing flexible one-to-two matching in ride-hailing systems with boundedly rational users," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    5. Ke, Jintao & Yang, Hai & Li, Xinwei & Wang, Hai & Ye, Jieping, 2020. "Pricing and equilibrium in on-demand ride-pooling markets," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 411-431.
    6. Hu, Xinru & Zhou, Shuiyin & Luo, Xiaomeng & Li, Jianbin & Zhang, Chi, 2024. "Optimal pricing strategy of an on-demand platform with cross-regional passengers," Omega, Elsevier, vol. 122(C).
    7. Zhu, Zheng & Xu, Ailing & He, Qiao-Chu & Yang, Hai, 2021. "Competition between the transportation network company and the government with subsidies to public transit riders," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    8. Li, Manzi & Jiang, Gege & Lo, Hong K., 2022. "Pricing strategy of ride-sourcing services under travel time variability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    9. Beojone, Caio Vitor & Geroliminis, Nikolas, 2023. "A dynamic multi-region MFD model for ride-sourcing with ridesplitting," Transportation Research Part B: Methodological, Elsevier, vol. 177(C).
    10. Zhang, Kenan & Alonso-Mora, Javier & Fielbaum, Andres, 2025. "What do walking and e-hailing bring to scale economies in on-demand mobility?," Transportation Research Part B: Methodological, Elsevier, vol. 192(C).
    11. Sun, Luoyi & Teunter, Ruud H. & Hua, Guowei & Wu, Tian, 2020. "Taxi-hailing platforms: Inform or Assign drivers?," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 197-212.
    12. Ke, Jintao & Li, Xinwei & Yang, Hai & Yin, Yafeng, 2021. "Pareto-efficient solutions and regulations of congested ride-sourcing markets with heterogeneous demand and supply," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    13. Meijian Yang & Enjun Xia, 2021. "A Systematic Literature Review on Pricing Strategies in the Sharing Economy," Sustainability, MDPI, vol. 13(17), pages 1-28, August.
    14. Chen, Junlin & Xiong, Jinghong & Chen, Guobao & Liu, Xin & Yan, Peng & Jiang, Hai, 2024. "Optimal instant discounts of multiple ride options at a ride-hailing aggregator," European Journal of Operational Research, Elsevier, vol. 314(2), pages 718-734.
    15. Ke, Jintao & Chen, Xiqun (Michael) & Yang, Hai & Li, Sen, 2022. "Coordinating supply and demand in ride-sourcing markets with pre-assigned pooling service and traffic congestion externality," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    16. Tubagus Robbi Megantara & Sudradjat Supian & Diah Chaerani, 2022. "Strategies to Reduce Ride-Hailing Fuel Consumption Caused by Pick-Up Trips: A Mathematical Model under Uncertainty," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    17. Hua, Shijia & Zeng, Wenjia & Liu, Xinglu & Qi, Mingyao, 2022. "Optimality-guaranteed algorithms on the dynamic shared-taxi problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    18. Zipeng Zhang & Ning Zhang, 2021. "Re-Recognition of Ride-Sourcing Service: From the Perspective of Operational Efficiency and Social Welfare," Sustainability, MDPI, vol. 13(15), pages 1-14, July.
    19. Shi, Junxin & Li, Xiangyong & Aneja, Y.P. & Li, Xiaonan, 2023. "Ride-matching for the ride-hailing platform with heterogeneous drivers," Transport Policy, Elsevier, vol. 136(C), pages 169-192.
    20. Xu, Yu & Ling, Liuyi & Wu, Jie & Xu, Shengshuo, 2024. "On-demand ride-hailing platforms under green mobility: Pricing strategies and government regulation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 189(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:198:y:2025:i:c:s1366554525001474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.