IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v197y2025ics1366554525001139.html
   My bibliography  Save this article

Deep multi-view information-powered vessel traffic flow prediction for intelligent transportation management

Author

Listed:
  • Li, Huanhuan
  • Zhang, Yu
  • Li, Yan
  • Lam, Jasmine Siu Lee
  • Matthews, Christian
  • Yang, Zaili

Abstract

Vessel traffic flow (VTF) prediction, essential for intelligent transportation management, is derived from the statistical analysis of longitude and latitude information from Automatic Identification System (AIS) data. Traditional deep learning approaches have struggled to effectively capture the intricate and dynamic characteristics inherent in VTF data. To address these challenges, this paper proposes a new prediction model called a Multi-view Periodic-Temporal Network with Semantic Representation (i.e., MPTNSR), which leverages three perspectives: periodic, temporal, and semantic. VTF typically conceals the periodic and temporal characteristics during its evolution. A Convolutional Neural Network and Bidirectional Long Short-Term Memory (CNN-BiLSTM) model, constructed from periodic and temporal views, effectively captures this information. However, real-world scenarios frequently involve predicting VTF for multiple target regions simultaneously, where correlations between VTF changes in different areas are significant. The semantic view seeks to extract relationships across different channels based on the similarity of VTF data fluctuations and geographical distribution across regions, utilising a Graph Convolutional Network (GCN). The final prediction result is generated by fusing the information from these three views. Additionally, an optimised loss function is developed in the MPTNSR model that integrates local and global measurement information. In summary, the proposed model combines the strengths of a multi-view learning network and an optimised loss function. Quantitative comparative experiments demonstrate that the MPTNSR model outperforms eighteen state-of-the-art methods in VTF prediction tasks. To enhance the model’s scalability, Graphics Processing Unit (GPU)-accelerated computation is introduced, significantly improving its efficiency and reducing its running time. The model enables accurate and robust prediction, effectively assisting in port planning and waterway management, thereby enhancing the safety and sustainability of maritime transportation.

Suggested Citation

  • Li, Huanhuan & Zhang, Yu & Li, Yan & Lam, Jasmine Siu Lee & Matthews, Christian & Yang, Zaili, 2025. "Deep multi-view information-powered vessel traffic flow prediction for intelligent transportation management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 197(C).
  • Handle: RePEc:eee:transe:v:197:y:2025:i:c:s1366554525001139
    DOI: 10.1016/j.tre.2025.104072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554525001139
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2025.104072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yan, Zhen & Yang, Hongyu & Wu, Yuankai & Lin, Yi, 2023. "A multi-view attention-based spatial–temporal network for airport arrival flow prediction," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    2. Okutani, Iwao & Stephanedes, Yorgos J., 1984. "Dynamic prediction of traffic volume through Kalman filtering theory," Transportation Research Part B: Methodological, Elsevier, vol. 18(1), pages 1-11, February.
    3. Ma, Zhengjing & Mei, Gang, 2022. "A hybrid attention-based deep learning approach for wind power prediction," Applied Energy, Elsevier, vol. 323(C).
    4. Zha, Wenshu & Liu, Yuping & Wan, Yujin & Luo, Ruilan & Li, Daolun & Yang, Shan & Xu, Yanmei, 2022. "Forecasting monthly gas field production based on the CNN-LSTM model," Energy, Elsevier, vol. 260(C).
    5. Li, Huanhuan & Yang, Zaili, 2023. "Incorporation of AIS data-based machine learning into unsupervised route planning for maritime autonomous surface ships," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 176(C).
    6. Niu, Dongxiao & Yu, Min & Sun, Lijie & Gao, Tian & Wang, Keke, 2022. "Short-term multi-energy load forecasting for integrated energy systems based on CNN-BiGRU optimized by attention mechanism," Applied Energy, Elsevier, vol. 313(C).
    7. Yang, Dong & Liao, Shiguan & Venus Lun, Y.H & Bai, Xiwen, 2023. "Towards sustainable port management: Data-driven global container ports turnover rate assessment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    8. Lv, Yang & Lv, Zhiqiang & Cheng, Zesheng & Zhu, Zhanqi & Rashidi, Taha Hossein, 2023. "TS-STNN: Spatial-temporal neural network based on tree structure for traffic flow prediction," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    9. Yang, Ying & Liu, Yang & Li, Guorong & Zhang, Zekun & Liu, Yanbin, 2024. "Harnessing the power of Machine learning for AIS Data-Driven maritime Research: A comprehensive review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    10. Li, Huanhuan & Xing, Wenbin & Jiao, Hang & Yuen, Kum Fai & Gao, Ruobin & Li, Yan & Matthews, Christian & Yang, Zaili, 2024. "Bi-directional information fusion-driven deep network for ship trajectory prediction in intelligent transportation systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
    11. Xinyue Cui & Zhaoyu Xu & Yue Zhou, 2020. "Using Machine Learning to Forecast Future Earnings," Papers 2005.13995, arXiv.org.
    12. Li, Huanhuan & Xing, Wenbin & Jiao, Hang & Yang, Zaili & Li, Yan, 2024. "Deep bi-directional information-empowered ship trajectory prediction for maritime autonomous surface ships," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    13. Makowski, David & Naud, Cédric & Jeuffroy, Marie-Hélène & Barbottin, Aude & Monod, Hervé, 2006. "Global sensitivity analysis for calculating the contribution of genetic parameters to the variance of crop model prediction," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1142-1147.
    14. Xue-Bo Jin & Wen-Tao Gong & Jian-Lei Kong & Yu-Ting Bai & Ting-Li Su, 2022. "PFVAE: A Planar Flow-Based Variational Auto-Encoder Prediction Model for Time Series Data," Mathematics, MDPI, vol. 10(4), pages 1-17, February.
    15. Wen Zhang & Zhibin Wu, 2022. "Optimal hybrid framework for carbon price forecasting using time series analysis and least squares support vector machine," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 615-632, April.
    16. Doucoure, Boubacar & Agbossou, Kodjo & Cardenas, Alben, 2016. "Time series prediction using artificial wavelet neural network and multi-resolution analysis: Application to wind speed data," Renewable Energy, Elsevier, vol. 92(C), pages 202-211.
    17. Li, Huanhuan & Jiao, Hang & Yang, Zaili, 2023. "AIS data-driven ship trajectory prediction modelling and analysis based on machine learning and deep learning methods," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fargalla, Mandella Ali M. & Yan, Wei & Deng, Jingen & Wu, Tao & Kiyingi, Wyclif & Li, Guangcong & Zhang, Wei, 2024. "TimeNet: Time2Vec attention-based CNN-BiGRU neural network for predicting production in shale and sandstone gas reservoirs," Energy, Elsevier, vol. 290(C).
    2. Li, Huanhuan & Xing, Wenbin & Jiao, Hang & Yuen, Kum Fai & Gao, Ruobin & Li, Yan & Matthews, Christian & Yang, Zaili, 2024. "Bi-directional information fusion-driven deep network for ship trajectory prediction in intelligent transportation systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
    3. Zhou, Kaiwen & Xing, Wenbin & Wang, Jingbo & Li, Huanhuan & Yang, Zaili, 2024. "A data-driven risk model for maritime casualty analysis: A global perspective," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    4. Stefenon, Stefano Frizzo & Seman, Laio Oriel & Aquino, Luiza Scapinello & Coelho, Leandro dos Santos, 2023. "Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants," Energy, Elsevier, vol. 274(C).
    5. Yin, Linfei & Wang, Nannan & Li, Jishen, 2025. "Electricity terminal multi-label recognition with a “one-versus-all” rejection recognition algorithm based on adaptive distillation increment learning and attention MobileNetV2 network for non-invasiv," Applied Energy, Elsevier, vol. 382(C).
    6. Zhao, Hongqian & Chen, Zheng & Shu, Xing & Shen, Jiangwei & Lei, Zhenzhen & Zhang, Yuanjian, 2023. "State of health estimation for lithium-ion batteries based on hybrid attention and deep learning," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    7. Xin, Xuri & Liu, Kezhong & Loughney, Sean & Wang, Jin & Li, Huanhuan & Ekere, Nduka & Yang, Zaili, 2023. "Multi-scale collision risk estimation for maritime traffic in complex port waters," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    8. Wan, Anping & Chang, Qing & AL-Bukhaiti, Khalil & He, Jiabo, 2023. "Short-term power load forecasting for combined heat and power using CNN-LSTM enhanced by attention mechanism," Energy, Elsevier, vol. 282(C).
    9. Li, Huanhuan & Xing, Wenbin & Jiao, Hang & Yang, Zaili & Li, Yan, 2024. "Deep bi-directional information-empowered ship trajectory prediction for maritime autonomous surface ships," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    10. Meng, Anbo & Xie, Zhifeng & Luo, Jianqiang & Zeng, Ying & Xu, Xuancong & Li, Yidian & Wu, Zhenbo & Zhang, Zhan & Zhu, Jianbin & Xian, Zikang & Li, Chen & Yan, Baiping & Yin, Hao, 2023. "An adaptive variational mode decomposition for wind power prediction using convolutional block attention deep learning network," Energy, Elsevier, vol. 282(C).
    11. Liu, Jiongjiong & Zhang, Jinfen & Yang, Zaili & Wan, Chengpeng & Zhang, Mingyang, 2024. "A novel data-driven method of ship collision risk evolution evaluation during real encounter situations," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    12. Qiao, Weiliang & Huang, Enze & Zhang, Meng & Ma, Xiaoxue & Liu, Dong, 2025. "Risk influencing factors on the consequence of waterborne transportation accidents in China (2013–2023) based on data-driven machine learning," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    13. He, Jianqiang & Jones, James W. & Graham, Wendy D. & Dukes, Michael D., 2010. "Influence of likelihood function choice for estimating crop model parameters using the generalized likelihood uncertainty estimation method," Agricultural Systems, Elsevier, vol. 103(5), pages 256-264, June.
    14. García, Irene & Huo, Stella & Prado, Raquel & Bravo, Lelys, 2020. "Dynamic Bayesian temporal modeling and forecasting of short-term wind measurements," Renewable Energy, Elsevier, vol. 161(C), pages 55-64.
    15. Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).
    16. Xing, Tao & Zhou, Xuesong & Taylor, Jeffrey, 2013. "Designing heterogeneous sensor networks for estimating and predicting path travel time dynamics: An information-theoretic modeling approach," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 66-90.
    17. Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
    18. Sheng Huang & Huakun Que & Lukun Zeng & Jingxu Yang & Kaihong Zheng, 2024. "Multi-Scale Graph Attention Network Based on Encoding Decomposition for Electricity Consumption Prediction," Energies, MDPI, vol. 17(23), pages 1-18, November.
    19. Hao, Shirui & Ryu, Dongryeol & Western, Andrew W & Perry, Eileen & Bogena, Heye & Franssen, Harrie Jan Hendricks, 2024. "Global sensitivity analysis of APSIM-wheat yield predictions to model parameters and inputs," Ecological Modelling, Elsevier, vol. 487(C).
    20. Mojtaba Qolipour & Ali Mostafaeipour & Mohammad Saidi-Mehrabad & Hamid R Arabnia, 2019. "Prediction of wind speed using a new Grey-extreme learning machine hybrid algorithm: A case study," Energy & Environment, , vol. 30(1), pages 44-62, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:197:y:2025:i:c:s1366554525001139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.