IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v249y2024ics0951832024003016.html
   My bibliography  Save this article

A novel data-driven method of ship collision risk evolution evaluation during real encounter situations

Author

Listed:
  • Liu, Jiongjiong
  • Zhang, Jinfen
  • Yang, Zaili
  • Wan, Chengpeng
  • Zhang, Mingyang

Abstract

Aiming at realizing collision risk quantitative evaluation among encounter ships, a novel data-driven evolution model is proposed concerning encounter evolution in maritime transportation. A probabilistic velocity obstacle with an elliptic conflict region is constructed by taking into account uncertainty. The degree of and time to domain violation are introduced to quantify collision risk levels under varying velocities. Then, a ship collision risk evolution model is formulated by considering spatial attributes, macro-level and micro-level evolution based on a realistic collision avoidance decision. The model parameters and their weights are determined by statistical analysis of historical encounter scenarios and the characteristics of encounter stages. Therefore, the model encapsulates the statistical characteristics of actual data, which improves its practical values. The results of case studies indicate that the collision risk evolution model can properly reflect collision risk, so that collision evolution stages can be classified accordingly for rational anti-collision guidance. It brings new contributions to risk visualization, collision avoidance decision-making, and collision accident analysis and responsibility determination.

Suggested Citation

  • Liu, Jiongjiong & Zhang, Jinfen & Yang, Zaili & Wan, Chengpeng & Zhang, Mingyang, 2024. "A novel data-driven method of ship collision risk evolution evaluation during real encounter situations," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
  • Handle: RePEc:eee:reensy:v:249:y:2024:i:c:s0951832024003016
    DOI: 10.1016/j.ress.2024.110228
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024003016
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110228?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:249:y:2024:i:c:s0951832024003016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.