IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v226y2022ics0951832022003003.html
   My bibliography  Save this article

A framework for onboard assessment and monitoring of flooding risk due to open watertight doors for passenger ships

Author

Listed:
  • Ruponen, Pekka
  • Montewka, Jakub
  • Tompuri, Markus
  • Manderbacka, Teemu
  • Hirdaris, Spyros

Abstract

Post-accident safety of ships is governed by damage stability, affected by watertight subdivisions which limit accidental flooding. This is important for passenger ships with watertight doors (WTDs) often fitted in the bulkheads. Awareness of the ship flooding risk due to open WTDs and the conditions under which the associated risk level changes are prerequisites for proactive risk mitigation.

Suggested Citation

  • Ruponen, Pekka & Montewka, Jakub & Tompuri, Markus & Manderbacka, Teemu & Hirdaris, Spyros, 2022. "A framework for onboard assessment and monitoring of flooding risk due to open watertight doors for passenger ships," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:reensy:v:226:y:2022:i:c:s0951832022003003
    DOI: 10.1016/j.ress.2022.108666
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022003003
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108666?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Du, Lei & Goerlandt, Floris & Kujala, Pentti, 2020. "Review and analysis of methods for assessing maritime waterway risk based on non-accident critical events detected from AIS data," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    2. Montewka, Jakub & Goerlandt, Floris & Innes-Jones, Gemma & Owen, Douglas & Hifi, Yasmine & Puisa, Romanas, 2017. "Enhancing human performance in ship operations by modifying global design factors at the design stage," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 283-300.
    3. Aven, Terje, 2013. "A conceptual framework for linking risk and the elements of the data–information–knowledge–wisdom (DIKW) hierarchy," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 30-36.
    4. Zhang, Mingyang & Montewka, Jakub & Manderbacka, Teemu & Kujala, Pentti & Hirdaris, Spyros, 2021. "A Big Data Analytics Method for the Evaluation of Ship - Ship Collision Risk reflecting Hydrometeorological Conditions," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    5. Wang, Huanxin & Liu, Zhengjiang & Wang, Xinjian & Graham, Tony & Wang, Jin, 2021. "An analysis of factors affecting the severity of marine accidents," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    6. Montewka, Jakub & Manderbacka, Teemu & Ruponen, Pekka & Tompuri, Markus & Gil, Mateusz & Hirdaris, Spyros, 2022. "Accident susceptibility index for a passenger ship-a framework and case study," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    7. Spyrou, Kostas J. & Koromila, Ioanna A., 2020. "A risk model of passenger ship fire safety and its application," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    8. Mazurek, J. & Lu, L. & Krata, P. & Montewka, J. & Krata, H. & Kujala, P., 2022. "An updated method identifying collision-prone locations for ships. A case study for oil tankers navigating in the Gulf of Finland," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    9. Goerlandt, Floris & Montewka, Jakub, 2015. "Maritime transportation risk analysis: Review and analysis in light of some foundational issues," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 115-134.
    10. Giustiniano, Luca & Cunha, Miguel Pina e & Clegg, Stewart, 2016. "The dark side of organizational improvisation: Lessons from the sinking of Costa Concordia," Business Horizons, Elsevier, vol. 59(2), pages 223-232.
    11. Gil, Mateusz, 2021. "A concept of critical safety area applicable for an obstacle-avoidance process for manned and autonomous ships," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    12. Zhang, Mingyang & Zhang, Di & Fu, Shanshan & Kujala, Pentti & Hirdaris, Spyros, 2022. "A predictive analytics method for maritime traffic flow complexity estimation in inland waterways," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    13. Stan Kaplan, 1997. "The Words of Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 17(4), pages 407-417, August.
    14. Gil, Mateusz & Kozioł, Paweł & Wróbel, Krzysztof & Montewka, Jakub, 2022. "Know your safety indicator – A determination of merchant vessels Bow Crossing Range based on big data analytics," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    15. Tom McLeod Logan & Terje Aven & Seth David Guikema & Roger Flage, 2022. "Risk science offers an integrated approach to resilience," Nature Sustainability, Nature, vol. 5(9), pages 741-748, September.
    16. Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    17. Aven, Terje, 2021. "The reliability science: Its foundation and link to risk science and other sciences," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    18. Du, Lei & Banda, Osiris A. Valdez & Huang, Yamin & Goerlandt, Floris & Kujala, Pentti & Zhang, Weibin, 2021. "An empirical ship domain based on evasive maneuver and perceived collision risk," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    19. Szlapczynski, Rafal & Szlapczynska, Joanna, 2021. "A ship domain-based model of collision risk for near-miss detection and Collision Alert Systems," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    20. Askeland, Tore & Flage, Roger & Aven, Terje, 2017. "Moving beyond probabilities – Strength of knowledge characterisations applied to security," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 196-205.
    21. Fan, Shiqi & Blanco-Davis, Eduardo & Yang, Zaili & Zhang, Jinfen & Yan, Xinping, 2020. "Incorporation of human factors into maritime accident analysis using a data-driven Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    22. Aven, Terje, 2012. "The risk concept—historical and recent development trends," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 33-44.
    23. Montewka, Jakub & Goerlandt, Floris & Kujala, Pentti, 2014. "On a systematic perspective on risk for formal safety assessment (FSA)," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 77-85.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xinjian & Xia, Guoqing & Zhao, Jian & Wang, Jin & Yang, Zaili & Loughney, Sean & Fang, Siming & Zhang, Shukai & Xing, Yongheng & Liu, Zhengjiang, 2023. "A novel method for the risk assessment of human evacuation from cruise ships in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    2. Mauro, Francesco & Vassalos, Dracos & Paterson, Donald, 2022. "Critical damages identification in a multi-level damage stability assessment framework for passenger ships," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    3. Gao, Dawei & Zhu, Yongsheng & Guedes Soares, C., 2023. "Uncertainty modelling and dynamic risk assessment for long-sequence AIS trajectory based on multivariate Gaussian Process," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    4. Gao, Dawei & Zhu, Yongsheng & Yan, Ke & Soares, C. Guedes, 2024. "Deep learning–based framework for regional risk assessment in a multi–ship encounter situation based on the transformer network," Reliability Engineering and System Safety, Elsevier, vol. 241(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mauro, Francesco & Vassalos, Dracos & Paterson, Donald, 2022. "Critical damages identification in a multi-level damage stability assessment framework for passenger ships," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    2. Mazurek, J. & Lu, L. & Krata, P. & Montewka, J. & Krata, H. & Kujala, P., 2022. "An updated method identifying collision-prone locations for ships. A case study for oil tankers navigating in the Gulf of Finland," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    3. Antão, P. & Sun, S. & Teixeira, A.P. & Guedes Soares, C., 2023. "Quantitative assessment of ship collision risk influencing factors from worldwide accident and fleet data," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    4. Gil, Mateusz & Kozioł, Paweł & Wróbel, Krzysztof & Montewka, Jakub, 2022. "Know your safety indicator – A determination of merchant vessels Bow Crossing Range based on big data analytics," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    5. Zhang, Mingyang & Kujala, Pentti & Hirdaris, Spyros, 2022. "A machine learning method for the evaluation of ship grounding risk in real operational conditions," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    6. Xin, Xuri & Liu, Kezhong & Loughney, Sean & Wang, Jin & Yang, Zaili, 2023. "Maritime traffic clustering to capture high-risk multi-ship encounters in complex waters," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    7. Wang, Xinjian & Xia, Guoqing & Zhao, Jian & Wang, Jin & Yang, Zaili & Loughney, Sean & Fang, Siming & Zhang, Shukai & Xing, Yongheng & Liu, Zhengjiang, 2023. "A novel method for the risk assessment of human evacuation from cruise ships in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    8. Gao, Dawei & Zhu, Yongsheng & Guedes Soares, C., 2023. "Uncertainty modelling and dynamic risk assessment for long-sequence AIS trajectory based on multivariate Gaussian Process," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    9. Montewka, Jakub & Manderbacka, Teemu & Ruponen, Pekka & Tompuri, Markus & Gil, Mateusz & Hirdaris, Spyros, 2022. "Accident susceptibility index for a passenger ship-a framework and case study," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    10. Fu, Shanshan & Yu, Yuerong & Chen, Jihong & Xi, Yongtao & Zhang, Mingyang, 2022. "A framework for quantitative analysis of the causation of grounding accidents in arctic shipping," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    11. Zyczkowski, Marcin & Szlapczynski, Rafal, 2023. "Collision risk-informed weather routing for sailboats," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    12. Rong, H. & Teixeira, A.P. & Guedes Soares, C., 2022. "Maritime traffic probabilistic prediction based on ship motion pattern extraction," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    13. Gao, Dawei & Zhu, Yongsheng & Yan, Ke & Soares, C. Guedes, 2024. "Deep learning–based framework for regional risk assessment in a multi–ship encounter situation based on the transformer network," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    14. Zvyagina, Tatiana & Zvyagin, Petr, 2022. "A model of multi-objective route optimization for a vessel in drifting ice," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    15. Zhang, Mingyang & Zhang, Di & Fu, Shanshan & Kujala, Pentti & Hirdaris, Spyros, 2022. "A predictive analytics method for maritime traffic flow complexity estimation in inland waterways," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    16. Wang, Lei & Liu, Qing & Dong, Shiyu & Guedes Soares, C., 2022. "Selection of countermeasure portfolio for shipping safety with consideration of investment risk aversion," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    17. Liu, Zhichen & Li, Ying & Zhang, Zhaoyi & Yu, Wenbo, 2022. "A new evacuation accessibility analysis approach based on spatial information," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    18. Wang, Xinjian & Liu, Zhengjiang & Loughney, Sean & Yang, Zaili & Wang, Yanfu & Wang, Jin, 2022. "Numerical analysis and staircase layout optimisation for a Ro-Ro passenger ship during emergency evacuation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    19. Puisa, Romanas & Montewka, Jakub & Krata, Przemyslaw, 2023. "A framework estimating the minimum sample size and margin of error for maritime quantitative risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    20. Guo, Yunlong & Jin, Yongxing & Hu, Shenping & Yang, Zaili & Xi, Yongtao & Han, Bing, 2023. "Risk evolution analysis of ship pilotage operation by an integrated model of FRAM and DBN," Reliability Engineering and System Safety, Elsevier, vol. 229(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:226:y:2022:i:c:s0951832022003003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.