IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v195y2025ics1366554525000067.html
   My bibliography  Save this article

Shared use of dedicated lanes by connected and automated buses and private vehicles: A multi-green-wave signal control scheme

Author

Listed:
  • Chen, Xiangdong
  • Guan, Hao
  • Meng, Qiang

Abstract

In the initial phase of implementing connected and automated vehicle (CAV) technology, the coexistence of human-driven vehicles (HVs) and CAVs is anticipated for the foreseeable future. While dedicated CAV lane is recognized as an effective solution to enhance traffic safety and efficiency in mixed traffic scenarios, it faces the challenges of road resource wastage, especially at low CAV penetration rates. Therefore, this study proposes a novel concept of a shared CAV lane for both connected and automated buses (CABs) and private CAVs, and develops a multi-green-wave control method for arterials to achieve space–time coordination in heterogeneous traffic. The two-dimensional traffic coordination aims to concurrently improve the service level of CABs and enhance overall traffic efficiency. A three-scale framework is established to integrate the control problems at the lane, intersection, and arterial levels. With the deployment of CAV lanes, lane-specified flow distribution control problem is investigated at the lane level, and a dedicated phase is designed to provide exclusive right-of-ways for CAVs, and jointed with an online conflict-free control strategy at the intersection level. Building upon this, a multiple green-wave design is developed for heterogeneous traffic at arterials, to take full exploit of the space–time resources of both CAV lanes and regular lanes and further improve traffic efficiency. To address the challenges of large-scale and complicated-structure optimization and enable real-time implementation, a hierarchical solution method is proposed. The original problem is decomposed into sub-problems, which can be efficiently solved with an approximation approach to relax the bounding constraints among them. Simulation experiments conducted on an arterial in Singapore validate the performance of the proposed methods. The results demonstrate that the proposed two-dimensional coordination strategy significantly improves traffic efficiency compared to other classic counterpart strategies, reducing the average travel delay for CABs, private CAVs, and HVs by at least 20.4%, 37.4%, and 21.4%, respectively.

Suggested Citation

  • Chen, Xiangdong & Guan, Hao & Meng, Qiang, 2025. "Shared use of dedicated lanes by connected and automated buses and private vehicles: A multi-green-wave signal control scheme," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:transe:v:195:y:2025:i:c:s1366554525000067
    DOI: 10.1016/j.tre.2025.103965
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554525000067
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2025.103965?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Zhaocai & Chen, Zhibin & He, Yi & Song, Ziqi, 2021. "Network user equilibrium problems with infrastructure-enabled autonomy," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 207-241.
    2. repec:plo:pone00:0149607 is not listed on IDEAS
    3. Dion, François & Hellinga, Bruce, 2002. "A rule-based real-time traffic responsive signal control system with transit priority: application to an isolated intersection," Transportation Research Part B: Methodological, Elsevier, vol. 36(4), pages 325-343, May.
    4. Ye, Lanhang & Yamamoto, Toshiyuki, 2018. "Impact of dedicated lanes for connected and autonomous vehicle on traffic flow throughput," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 588-597.
    5. Ngoduy, Dong & Nguyen, Cuong H.P. & Lee, Seunghyeon & Zheng, Zuduo & Lo, Hong K., 2024. "A dynamic system optimal dedicated lane design for connected and autonomous vehicles in a heterogeneous urban transport network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    6. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "Integrated deployment of dedicated lane and roadside unit considering uncertain road capacity under the mixed-autonomy traffic environment," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    7. Little, John D. C. & Kelson, Mark D. & Gartner, Nathan H., 1981. "MAXBAND : a versatile program for setting signals on arteries and triangular networks," Working papers 1185-81., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    8. S. C. Wirasinghe & L. Kattan & M. M. Rahman & J. Hubbell & R. Thilakaratne & S. Anowar, 2013. "Bus rapid transit - a review," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 17(1), pages 1-31, March.
    9. Chen, Shukai & Wang, Hua & Xiao, Ling & Meng, Qiang, 2022. "Random capacity for a single lane with mixed autonomous and human-driven vehicles: Bounds, mean gaps and probability distributions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    10. Gartner, Nathan H. & Assman, Susan F. & Lasaga, Fernando & Hou, Dennis L., 1991. "A multi-band approach to arterial traffic signal optimization," Transportation Research Part B: Methodological, Elsevier, vol. 25(1), pages 55-74, February.
    11. Wang, Zhimian & An, Kun & Correia, Gonçalo & Ma, Wanjing, 2024. "Real-time scheduling and routing of shared autonomous vehicles considering platooning in intermittent segregated lanes and priority at intersections in urban corridors," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    12. Zhu, H.B., 2010. "Numerical study of urban traffic flow with dedicated bus lane and intermittent bus lane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3134-3139.
    13. Ghiasi, Amir & Hussain, Omar & Qian, Zhen (Sean) & Li, Xiaopeng, 2017. "A mixed traffic capacity analysis and lane management model for connected automated vehicles: A Markov chain method," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 266-292.
    14. Li, Tongfei & Qian, Zhen & Fan, Bo & Xu, Min & Sun, Huijun & Chen, Yanyan, 2024. "Integrated optimal planning of multi-type lanes and intersections in a transportation network with mixed HVs and CAVs," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
    15. Li, Xin & Wang, Tianqi & Xu, Weihan & Li, Huaiyue & Yuan, Yun, 2024. "Modelling connected and autonomous bus on dynamics of mixed traffic in partially connected and automated traffic environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 191(C).
    16. Amirgholy, Mahyar & Nourinejad, Mehdi & Gao, H. Oliver, 2020. "Optimal traffic control at smart intersections: Automated network fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 2-18.
    17. Islam, Tarikul & Vu, Hai L. & Hoang, Nam H. & Cricenti, Antonio, 2018. "A linear bus rapid transit with transit signal priority formulation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 163-184.
    18. Wang, Ting & Li, Yao & Jia, Bin & Long, Jiancheng, 2024. "An autonomous vehicle exclusive lane design problem under the mixed autonomy traffic environment: Model formulation and large-scale algorithm design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    19. Li, Tongfei & Cao, Yaning & Xu, Min & Sun, Huijun, 2023. "Optimal intersection design and signal setting in a transportation network with mixed HVs and CAVs," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    20. Yu, Chunhui & Feng, Yiheng & Liu, Henry X. & Ma, Wanjing & Yang, Xiaoguang, 2018. "Integrated optimization of traffic signals and vehicle trajectories at isolated urban intersections," Transportation Research Part B: Methodological, Elsevier, vol. 112(C), pages 89-112.
    21. Chen, Danjue & Ahn, Soyoung & Chitturi, Madhav & Noyce, David A., 2017. "Towards vehicle automation: Roadway capacity formulation for traffic mixed with regular and automated vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 196-221.
    22. Graham Currie & Majid Sarvi & Bill Young, 2007. "A new approach to evaluating on-road public transport priority projects: balancing the demand for limited road-space," Transportation, Springer, vol. 34(4), pages 413-428, July.
    23. Kimber, R. M. & McDonald, M. & Hounsell, N., 1985. "Passenger car units in saturation flows: Concept, definition, derivation," Transportation Research Part B: Methodological, Elsevier, vol. 19(1), pages 39-61, February.
    24. Wu, Wei & Zhang, Fangni & Liu, Wei & Lodewijks, Gabriel, 2020. "Modelling the traffic in a mixed network with autonomous-driving expressways and non-autonomous local streets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xiangdong & Zhang, Fang & Guan, Hao & Meng, Qiang, 2025. "Two-dimensional lane configuration design approach for Autonomous Vehicle Dedicated Lanes in urban networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 194(C).
    2. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "Integrated deployment of dedicated lane and roadside unit considering uncertain road capacity under the mixed-autonomy traffic environment," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    3. Li, Xin & Wang, Tianqi & Xu, Weihan & Li, Huaiyue & Yuan, Yun, 2024. "Modelling connected and autonomous bus on dynamics of mixed traffic in partially connected and automated traffic environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 191(C).
    4. Wang, Yi & Li, Le & Wu, Yunxia & Yao, Zhihong & Jiang, Yangsheng, 2024. "Efficiency and fuel consumption of mixed traffic flow with lane management of CAVs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 652(C).
    5. Zhang, Fang & Meng, Qiang & Taeihagh, Araz, 2025. "Bounding the efficiency of vehicle automation in general transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 195(C).
    6. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "A stochastic dynamic network loading model for mixed traffic with autonomous and human-driven vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    7. Li, Tongfei & Cao, Yaning & Xu, Min & Sun, Huijun, 2023. "Optimal intersection design and signal setting in a transportation network with mixed HVs and CAVs," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    8. Zheng, Yuan & Yao, Zhihong & Xu, Yueru & Qu, Xu & Ran, Bin, 2024. "Lane management for mixed traffic flow on roadways considering the car-following behaviors of human-driven vehicles to follow connected and automated vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    9. Li, Tongfei & Qian, Zhen & Fan, Bo & Xu, Min & Sun, Huijun & Chen, Yanyan, 2024. "Integrated optimal planning of multi-type lanes and intersections in a transportation network with mixed HVs and CAVs," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
    10. Wu, Guohong & Wu, Jiaming & Zheng, Shiteng & Jiang, Rui, 2024. "Managing merging from a dedicated CAV lane into a conventional lane considering the stochasticity of connected human-driven vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 652(C).
    11. Yu, Chunhui & Ma, Wanjing & Yang, Xiaoguang, 2020. "A time-slot based signal scheme model for fixed-time control at isolated intersections," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 176-192.
    12. Yao, Zhihong & Li, Le & Liao, Wenbin & Wang, Yi & Wu, Yunxia, 2024. "Optimal lane management policy for connected automated vehicles in mixed traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    13. Guan, Hao & Wang, Hua & Meng, Qiang & Mak, Chin Long, 2023. "Markov chain-based traffic analysis on platooning effect among mixed semi- and fully-autonomous vehicles in a freeway lane," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 176-202.
    14. Qingyu Luo & Rui Du & Hongfei Jia & Lili Yang, 2022. "Research on the Deployment of Joint Dedicated Lanes for CAVs and Buses," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    15. Guo, Mengting & Bai, Yang & Li, Xia & Zhou, Wei & Wang, Chunyang & Ma, Xinwei & Gao, Huixin & Xiao, Yuewen, 2023. "Freeway capacity modeling and analysis for traffic mixed with human-driven and connected automated vehicles considering driver behavior characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    16. Zhou, Wenhan & Weng, Jiancheng & Li, Tongfei & Fan, Bo & Bian, Yang, 2024. "Modeling the road network capacity in a mixed HV and CAV environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    17. Chen, Yu & Wang, Wei & Hua, Xuedong & Wang, David Z.W. & Wang, Jian, 2025. "Sustainable and reliable design of autonomous driving lanes: A chance-constrained extended goal programming approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 195(C).
    18. Chen, Shukai & Wang, Hua & Xiao, Ling & Meng, Qiang, 2022. "Random capacity for a single lane with mixed autonomous and human-driven vehicles: Bounds, mean gaps and probability distributions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    19. Wang, Hua & Meng, Qiang & Chen, Shukai & Zhang, Xiaoning, 2021. "Competitive and cooperative behaviour analysis of connected and autonomous vehicles across unsignalised intersections: A game-theoretic approach," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 322-346.
    20. Long, Keke & Ma, Ke & Li, Qianwen & Li, Xiaopeng & Huang, Zhitong & James, Rachel & Ghiasi, Amir, 2025. "A comprehensive assessment of connected and automated vehicle analytical, modeling, and simulation tools," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 196(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:195:y:2025:i:c:s1366554525000067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.